Most temperature indicators that use thermocouples as sensors include an internal thermometer for compensating room temperature variations. This thermometer measures ambient temperature, which is then converted to a thermoelectric voltage. This voltage is added to the electromotive force measured in the thermocouple sensor and then converted back to temperature. Although precise calibration of the indicator can be conducted in a controlled room-temperature environment, additional uncertainty arises due to room temperature compensation during actual measurements. To address this issue, we calibrated temperature indicator at the ice point. In this experiment, the indicator was placed in an environment where the temperature varied between 8 and 38oC, demonstrating its dependency on ambient temperature. In a second set of experiments, we shorted the thermocouple input terminal to verify whether the indicator correctly indicated the ambient temperature. This study proposed a method to assess additional uncertainty that must be considered when using a thermocouple connected to an indicator calibrated with an external ice point in a laboratory. It also highlights additional steps and factors to consider during the calibration of temperature indicators that employ internal temperature compensation.
Microcellular foaming plastics create a sensation at polymer industrial for lowering product costs and overcoming a lowering of mechanical intensity. Among many advantages, microcellular foaming plastics is well known to have a good acoustical properties. This research based on the experiment of sound absorption and transmission characteristics inquire into acoustical properties of microcellular foaming plastics. Difference of transmission loss of microcellular foaming plastics and solid materials was defined as cell effect. Also, cell effect is expressed by sound reflection and sound absorption. This study is expected to fundamental research to present economical, functional alternative plan for products using sound absorption and transmission materials.