Here in, a high-quality automotive camera lens was developed based on an ultra-precision diamond turning core and cyclic olefin polymer (COP) injection molding process. To improve surface roughness and achieve the accuracy of plastic injection molding lens, systematic mold core machining process was developed and demonstrated using the diamond turning machine. The cutting tool path was generated by using NanoCAM 2D, and it was partly revised to prevent interference between the cutting tool and the workpiece. After the initial machining using the generated tool path, the compensation-cutting process was conducted based on the measured surface profile of an initially machined surface. After two times of compensation machining, the fabricated core mold showed a shape error of 100 nm between peak to valley (PV) and Arithmetic mean roughness (Ra) of 3.9 nm. The performance of the fabricated core was evaluated using an injection molding test. Injection molded aspheric plastic lens showed contrasts that were higher than 55% at 0.0 F, 30% at 0.3 F, and 20% at 0.7 F without any moiré phenomenon that meets the specification for automotive vision module with 1MP and 140° field of view.
Citations
Citations to this article as recorded by
Research progress on grinding contact theory of axisymmetric aspheric optical elements Wenzhang Yang, Bing Chen, Bing Guo, Qingliang Zhao, Juchuan Dai, Guangye Qing Precision Engineering.2026; 97: 24. CrossRef
Performance enhancement of material removal using a surface-refinement model based on spatial frequency–response characteristics in magnetorheological finishing Minwoo Jeon, Seok-Kyeong Jeong, Woo-Jong Yeo, Hwan-Jin Choi, Mincheol Kim, Min-Gab Bog, Wonkyun Lee The International Journal of Advanced Manufacturing Technology.2024; 135(11-12): 5391. CrossRef
Recently, interest in astronomy has increased internationally, and the technological development of lenses for large space telescopes is progressing. The multi-order diffractive engineered (MODE) lenses can make a large space telescope light and thin. However, because glass lenses are difficult to machine, we have adopted a method of molding at high temperature and high pressure. The STAVAX is commercially available chrome alloy stainless steel, and it is applied as various mold materials. The ultrasonic vibration cutting was adopted for ultra-precision machining because the tool wear is severe when cutting the STAVAX with a diamond tool. To achieve a flat surface for smooth ultrasonic vibration cutting, we performed a precise shape cutting using a CBN tool and confirmed and observed changes in the surface roughness and hardness depending on the cutting conditions. The ultrasonic vibration cutting was performed on the surface of the machine using a CBN tool, and the surface roughness was observed. It was confirmed that the surface roughness was impacted by the surface hardness. The specimens with low surface hardness showed the highest surface roughness at approximately 3 nm.
Citations
Citations to this article as recorded by
Study on Reduction of Pyrolysis Shrinkage in the Carbonization of Furan Precursor by Addition of Vitreous Carbon Powder Young Kyu Kim, Dong-in Hong, Hongmin Kim, Suho Ahn, Seok-Min Kim Journal of the Korean Society for Precision Engineering.2024; 41(2): 139. CrossRef
Fabrication and Characterization of Automotive Aspheric Camera Lens Mold based on Ultra-precision Diamond Turning Process Ji-Young Jeong, Hwan-Jin Choi, Jong Sung Park, Jong-Keun Sim, Young-Jae Kim, Eun-Ji Gwak, Doo-Sun Choi, Tae-Jin Je, Jun Sae Han Journal of the Korean Society for Precision Engineering.2024; 41(2): 101. CrossRef
Analysis of Environmental Factors Affecting the Machining Accuracy Young Bok Kim, Wee Sam Lee, June Park, Yeon Hwang, June Key Lee Journal of the Korean Society of Manufacturing Process Engineers.2021; 20(7): 15. CrossRef