A miniature metal bellows is used to minimize the excessive flow of the cryogenic gas in Joule-Thomson micro cryocooler. It is made of metal alloy and its geometry is axisymmetric. The bellows is filled with high pressure gas. It contracts or expands in the axial direction for a wide change of temperature, because the pressure and volume inside the bellows must be satisfied with state equation of the gas. Therefore, in order to design the bellows in Joule-Thomson micro-cryocooler, it is important to evaluate deformation of the bellows under internal pressure exactly. Considering geometric nonlinearity, deformations analysis of the bellows were obtained by a commercial finite element code ANSYS. The bellows was modeled by 3-node axisymmetric shell elements with reduced integration. Experiments were also performed to prove the validity of proposed numerical analysis. The results by numerical analysis and experiments were shown in good agreements.