Bellows is used to control temperature of a Joule-Thomson micro cryocooler. It is made of Nickelcobalt alloy that retains mechanical properties from cryogenic temperature to temperature of 570K. The geometry of bellows is an axisymmetric shell and Nitrogen with high pressure was charged at temperature of 293K. During cool-down process, the pressure and volume of Nitrogen are changed and must be satisfied with state equation. At cryogenic temperature, Nitrogen can exist as a part liquid and part vapor. Pressure-density-temperature behavior under this vaporliquid phase equilibrium is closely given by the Modified-Benedict-Webb-Rubin(MBWR) state equation. To evaluate deformation of bellows for temperature change, the numerical calculation of the volume within bellows and finite element analysis of bellows under internal pressure were iteratively performed until MBWR state equation is satisfied. The numerical results show that deformation of the bellows can be analyzed by the present method in a wide range of temperature including cryogenic temperature.