Multizeros(multiple order zeros) optical beams which belong to the Laguerre-Gaussian beams, have rotational phase and conically-shaped amplitude structures around multizeros points in their phase and amplitude profiles, respectively. Especially, they have their own characteristics that the multizero points do not vanish over free-space propagation.Therefore, they are expected to be adequate for the applications of long-range optical measurement by using their multizero points as optical markers for the deformation sensing. In this paper, fundamental properties of multizeros optical beams for long-range optical measurement applications are investigated and clarified. In particular, the mathematical investigations are described on the characteristics of multizeoros optical beams such as (1) separation of a multizero into isolated single order zeros, (2) topological charge of zeros distribution which are induced by superposing them. And also the outline of a fundamental experiment and its result are explained briefly.