Any relative deformation between the cutting tool and the workpiece at the machining point, results directly in form and dimensional errors. The source of relative deformations between the cutting tool and the workpiece at the contact point may be due to thermal, weight, and cutting forces. This paper presents an investigation into dry and fluid machining with the objective of evaluating shape accuracy effect for the turning process of Al6061. The thermal distribution of cutting tool and cutting force was predicted using finite element method after measuring the temperature of the tool holder. To reach this goal, shape accuracy turning experiments are carried out according to cutting conditions with dry and fluid machining methods. The variable cutting conditions are cutting speed, depth of cutting and feed rate.