This paper suggests a new film-type haptic actuator based on cellulose acetate electro-active paper. Conventional tiny haptic actuators in mobile devices can create vibrotactile sensation at only near resonant frequency. The strategy of operating near the resonant frequency, however, brought a new issue for creating vibrotactile sensation which can be strong enough to feel in arbitrary frequency. Another problem is that the size of the conventional actuator is not small enough to be embedded into slim mobile devices. In order to achieve these issues, we propose a thin and tiny actuator based on a cellulose acetate material charged with an electric potential. The
motion of the actuator can be a concave or a convex by controlling a polarity of both charged membranes and the actuator performance can be modulated by increasing level of biased electric potential.