High-speed spindle systems typically employ angular contact ball bearings, which can resist both axial and radial loading, and exhibit high precision and durability. We investigated the effects of the arrangement of the angular contact ball bearings on the dynamics of high-speed spindle systems. The spindle dynamics were studied with a number of spindle-bearing models, and the location of the bearings was varied, along with the rotational speed and the preload. A finite element spindle model and a bearing model were used, and simulated data showed that the bearing arrangement significantly affected the spindle dynamics. Furthermore, the main effects were due to the cross coupling terms between the transverse and rotational motions of the ball bearings. The coupling stiffness terms were found to influence the spindle dynamics, depending on the mode shapes. An extensive discussion is provided on the effects of the bearing arrangement on the dynamics of the spindle.