This paper presents a high-performance flexible tactile sensor based on inorganic silicon flexible electronics. We created 100 nm-thick semiconducting silicon ribbons equally distributed with 1mm spacing and 8×8 arrays to sense the pressure distribution with high-sensitivity and repeatability. The organic silicon rubber substrate was used as a spring material to achieve both of mechanical flexibility and robustness. A thin copper layer was deposited and patterned on top of the pressure sensing layer to create a flexible temperature sensing layer. The fabricated tactile sensor was tested through a series of experiments. The results showed that the tactile sensor is capable of measuring pressure and temperature simultaneously and independently with high precision.