Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS
REGULAR

MTConnect를 활용한 수치제어 프로그램의 에너지 예측 모델링

Energy Prediction Modeling for Numerical Control Programs Using MTConnect

Journal of the Korean Society for Precision Engineering 2017;34(5):355-362.
Published online: May 1, 2017

1 부경대학교 기술경영전문대학원

2 미국 국립표준과학기술원 정보기술연구소

3 부경대학교 시스템경영공학부

1 Graduate School of Management of Technology, Pukyong National University

2 Information Technology Laboratory, National Institute of Standards and Technology, USA

3 Division of Systems Management and Engineering, Pukyong National University

#E-mail: sjshin@pknu.ac.kr, TEL: +82-51-629-5646, FAX: +82-51-629-5659
• Received: July 14, 2016   • Revised: December 28, 2016   • Accepted: February 1, 2017

Copyright © The Korean Society for Precision Engineering

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

  • 7 Views
  • 0 Download
  • 3 Crossref
  • 3 Scopus
prev next

Citations

Citations to this article as recorded by  Crossref logo
  • Automated DNA Extraction Monitoring System Based on MTConnect Technology
    Sang-Ho Han, Ae-Ja Park, Ah-Reum Park, Mun-Ho Ryu
    Applied Sciences.2021; 11(2): 684.     CrossRef
  • A Hybrid Learning-based Predictive Process Planning Mechanism for Cyber-Physical Production Systems
    Seung-Jun Shin
    Journal of the Korean Society for Precision Engineering.2019; 36(4): 391.     CrossRef
  • Development of Unified Interface for Multi-Vendors’ CNC Based on Machine State Model
    Joo Sung Yoon, Il Ha Park, Jin Ho Sohn, Hoen Jeong Kim
    Journal of the Korean Society for Precision Engineering.2018; 35(2): 151.     CrossRef

Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:

Include:

Energy Prediction Modeling for Numerical Control Programs Using MTConnect
J. Korean Soc. Precis. Eng.. 2017;34(5):355-362.   Published online May 1, 2017
Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:
Include:
Energy Prediction Modeling for Numerical Control Programs Using MTConnect
J. Korean Soc. Precis. Eng.. 2017;34(5):355-362.   Published online May 1, 2017
Close

Figure

  • 0
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
Energy Prediction Modeling for Numerical Control Programs Using MTConnect
Image Image Image Image Image Image Image Image
Fig. 1 Relationship of attributes data and energy models
Fig. 2 Procedure of energy prediction modeling
Fig. 3 Examples of data collection from ISO14649, ISO6983 programs and MTConnect documents
Fig. 4 An example of data synchronization
Fig. 5 A structure of artificial neural network for an energy model
Fig. 6 An example of energy model use
Fig. 7 A test part for experiments
Fig. 8 Measured and predicted power values for trial 1
Energy Prediction Modeling for Numerical Control Programs Using MTConnect

Setup of experiments

Property Setup
Machine tool Mori seiki NVD 1500 DCG
CNC Fanuc 0i series
Power meter System insights high speed
Workpiece Cold finish mild steel 1018
(10.16 cm × 10.16 cm × 1.27 cm)
Cooling Wet
Cutting tool Solid carbide
Tool geometry Flat end mill
(8 mm diameter, 4 number of flutes)

A list of process parameters

Trial Feedrate (x1)
(mm/tooth)
Spindle speed (x2)
(RPM)
Cutting depth (x3)
(mm)
1 0.0127 1500 1.5
2 0.0127 2000 1.5
3 0.0127 1750 1
4 0.0229 1750 1
5 0.0127 1750 2
6 0.0178 1500 1
7 0.0178 2000 1
8 0.0178 2000 2
9 0.0178 1500 1.5
10 0.0076 1500 1.5
11 0.0152 1500 1.5
12 0.0127 1500 1.5

Comparison of measured roughness data

Trial Measured
energy (kJ)
Predicted
energy (kJ)
RMSE
(J)
RTE
(%)
1 13952.5 13901.1 28.67 -0.37
2 11382.1 11414.2 29.72 0.28
3 19535.2 19457.8 23.62 -0.40
4 9830.3 9823.5 28.39 -0.07
5 9943.1 10007.9 34.50 0.65
6 13365.9 13417.1 25.30 0.38
7 11044.0 11076.5 26.26 0.30
8 6012.6 5947.6 41.10 -1.08
9 9750.7 9720.8 32.58 -0.31
10 19281.6 19298.4 21.82 0.09
11 10791.6 10873.6 30.12 0.76
12 12580.1 12529.8 29.98 -0.40
Table 1 Setup of experiments
Table 2 A list of process parameters
Table 3 Comparison of measured roughness data