Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS
REGULAR

2.5 톤 저상형 고소작업차량 붐 조인트의 최적설계

Optimal Design of Boom Joint for 2.5 Ton Class Aerial Lift Truck

Journal of the Korean Society for Precision Engineering 2018;35(8):769-775.
Published online: August 1, 2018

1 한국산업기술대학교 기계설계공학과

1 Department of Mechanical Design Engineering, Korea Polytechnic University

#E-mail: jhlee@kpu.ac.kr, TEL: +82-31-8041-0425
• Received: November 26, 2017   • Revised: April 16, 2018   • Accepted: April 30, 2018

Copyright © The Korean Society for Precision Engineering

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

  • 7 Views
  • 0 Download
  • 3 Crossref
  • 2 Scopus
prev next

Citations

Citations to this article as recorded by  Crossref logo
  • Optimal Design of 50 ton Hydraulic Breaker Housing
    Jai Hak Lee, Dong Ju Lee, Jun Young Choi
    Journal of the Korean Society for Precision Engineering.2022; 39(4): 269.     CrossRef
  • A Study on Structural Analysis for Stability Evaluation According to Design Parameters of a Fire Ladder Vehicle
    Hoon Jung, Cheol-Jung Kim, Hong-Gun Kim
    Journal of the Korean Society of Manufacturing Process Engineers.2020; 19(8): 64.     CrossRef
  • Optimal Design of Boom for Telescopic Boom Type Forklift Truck
    Jai Hak Lee, Kang Su Kim
    Journal of the Korean Society for Precision Engineering.2020; 37(6): 457.     CrossRef

Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:

Include:

Optimal Design of Boom Joint for 2.5 Ton Class Aerial Lift Truck
J. Korean Soc. Precis. Eng.. 2018;35(8):769-775.   Published online August 1, 2018
Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:
Include:
Optimal Design of Boom Joint for 2.5 Ton Class Aerial Lift Truck
J. Korean Soc. Precis. Eng.. 2018;35(8):769-775.   Published online August 1, 2018
Close

Figure

  • 0
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
Optimal Design of Boom Joint for 2.5 Ton Class Aerial Lift Truck
Image Image Image Image Image Image Image Image Image Image Image Image Image
Fig. 1 Photo of aerial lift truck
Fig. 2 Part name
Fig. 3 Boundary conditions
Fig. 4 Stress and deformation results (initial)
Fig. 5 Modified 1st boom
Fig. 6 Modified boom joint
Fig. 7 Stress of modified model
Fig. 8 Main effects plot
Fig. 9 Interaction plot
Fig. 10 Main effects plot (central composite)
Fig. 11 Optimization plot
Fig. 12 Stress of optimized model
Fig. 13 Deformation of optimized model
Optimal Design of Boom Joint for 2.5 Ton Class Aerial Lift Truck

List of materials used in structure analysis

Material Yield strength
(MPa)
Allowable strength
(MPa)
ATOS80 700 473
SS41 400 270
SM45C 490 331

L16(215) Orthogonal array of 5 factors

No. D H C B W Y
1 42.7 869 164 200 70 435.71
2 52.7 869 164 200 0 373.86
3 42.7 989 164 200 0 418.68
4 52.7 989 164 200 70 343.59
5 42.7 869 334 200 0 392.30
6 52.7 869 334 200 70 358.28
7 42.7 989 334 200 70 368.87
8 52.7 989 334 200 0 312.99
9 42.7 869 164 300 0 494.44
10 52.7 869 164 300 70 369.08
11 42.7 989 164 300 70 365.11
12 52.7 989 164 300 0 361.46
13 42.7 869 334 300 70 414.38
14 52.7 869 334 300 0 340.11
15 42.7 989 334 300 0 359.79
16 52.7 989 334 300 70 314.73

Analysis of variance (orthogonal array)

Source DF Adj SS Adj MS F-Value P-Value
D 1 14112.3 14112.3 27.75 0
H 1 6928.1 6928.1 13.62 0.004
C 1 5643 5643 11.09 0.008
B 1 13.7 13.7 0.03 0.873
W 1 439.7 439.7 0.86 0.374
Error 10 5086.3 508.6
Total 15 32223.1

Design of 2-level 3-factor with center point

No. D H C Y
1 42.7 869 164 463.70
2 52.7 869 164 373.58
3 42.7 989 164 418.68
4 52.7 989 164 343.52
5 42.7 869 334 424.89
6 52.7 869 334 342.52
7 42.7 989 334 383.55
8 52.7 989 334 314.10
9 47.7 929 249 355.48

Analysis of variance (2-level 3-factor) - after pooling

Source DF Adj SS Adj MS F-Value P-Value
D 1 12569.1 12569.1 1412.02 0
H 1 2622.3 2622.3 294.59 0
C 1 2258.6 2258.6 253.73 0.001
D*H 1 97.2 97.2 10.92 0.046
Curvature 1 676.5 676.5 76 0.003
Error 3 26.7 8.9
Total 8 18250.3

Design of central composite

No. D H C Y
1 42.7 869 164 463.70
2 52.7 869 164 373.58
3 42.7 989 164 418.68
4 52.7 989 164 343.52
5 42.7 869 334 424.89
6 52.7 869 334 342.52
7 42.7 989 334 383.55
8 52.7 989 334 314.10
9 42.7 929 249 425.22
10 52.7 929 249 346.55
11 47.7 869 249 398.52
12 47.7 989 249 339.94
13 47.7 929 164 370.75
14 47.7 929 334 341.89
15 47.7 929 249 355.48

Analysis of variance (central composite) - after pooling

Source DF Adj SS Adj MS F-Value P-Value
D 1 15663.4 15663.4 366.95 0
H 1 4138 4138 96.94 0
C 1 2666 2666 62.46 0
D*D 1 3183.5 3183.5 74.58 0
Error 15 640.3 42.7
Total 19 26291.2

Optimal design

D H C Y
51.5889 989 334 306.2
Table 1 List of materials used in structure analysis
Table 2 L16(215) Orthogonal array of 5 factors
Table 3 Analysis of variance (orthogonal array)
Table 4 Design of 2-level 3-factor with center point
Table 5 Analysis of variance (2-level 3-factor) - after pooling
Table 6 Design of central composite
Table 7 Analysis of variance (central composite) - after pooling
Table 8 Optimal design