Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS
REGULAR

Effect of Process Parameters on Mechanical Strength of Fabricated Parts using the Fused Deposition Modelling Method

Journal of the Korean Society for Precision Engineering 2019;36(8):705-712.
Published online: August 1, 2019

1 Department of Global Production Engineering and Management, Vietnamese-German University, 2 Le lai, Thu Dau Mot, Binh Duong Vietnam

#E-mail: thanh.tt@vgu.edu.vn, TEL. +84-985-271-460
• Received: March 26, 2019   • Revised: June 10, 2019   • Accepted: June 11, 2019

Copyright © The Korean Society for Precision Engineering

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

  • 8 Views
  • 0 Download
  • 17 Crossref
prev next

Citations

Citations to this article as recorded by  Crossref logo
  • Predicting the dynamic tensile response of FDM materials using machine learning
    Amjad Alsakarneh, Sinan Obaidat, Ahmad A. Mumani, Mohammad F. Tamimi
    Discover Applied Sciences.2025;[Epub]     CrossRef
  • From feedforward to quantum: Exploring neural networks for predicting tensile strength in additively manufactured polylactic acid parts
    Mohammad Hossein Nikzad, Mohammad Heidari-Rarani, Reza Rasti, Neda Moghim, Sachin Shetty
    Materials Today Communications.2025; 49: 113956.     CrossRef
  • Machine learning-driven prediction of tensile strength in 3D-printed PLA parts
    Mohammad Hossein Nikzad, Mohammad Heidari-Rarani, Reza Rasti, Pooya Sareh
    Expert Systems with Applications.2025; 264: 125836.     CrossRef
  • Using Bayesian Regularized Artificial Neural Networks to Predict the Tensile Strength of Additively Manufactured Polylactic Acid Parts
    Valentina Vendittoli, Wilma Polini, Michael S. J. Walter, Stefan Geißelsöder
    Applied Sciences.2024; 14(8): 3184.     CrossRef
  • Experimental and Investigation of ABS Filament Process Variables on Tensile Strength Using an Artificial Neural Network and Regression Model
    Mostafa Adel Abdullah Hamed
    Al-Nahrain Journal for Engineering Sciences.2024; 27(2): 251.     CrossRef
  • OPTIMIZATION OF FDM 3D PRINTING PARAMETERS FOR TENSILE STRENGTH OF PETG CARBON FIBRE USING TAGUCHI METHOD
    Nor Aiman Sukindar, Nurul Aini Athirah Abdul Rahim , Ahmad Shah Hizam Md Yasir , Shafie Kamaruddin , Mohamad Talhah Al Hafiz Mohd Khata , Nor Farah Huda Abd Halim , Mohamad Nor Hafiz Jamil , Ahmad Azlan Ab Aziz
    International Journal of Modern Manufacturing Technologies.2024; 16(3): 143.     CrossRef
  • The use of machine learning in process–structure–property modeling for material extrusion additive manufacturing: a state-of-the-art review
    Ziadia Abdelhamid, Habibi Mohamed, Sousso Kelouwani
    Journal of the Brazilian Society of Mechanical Sciences and Engineering.2024;[Epub]     CrossRef
  • Machine Learning Study of the Effect of Process Parameters on Tensile Strength of FFF PLA and PLA-CF
    Abdelhamid Ziadia, Mohamed Habibi, Sousso Kelouwani
    Eng.2023; 4(4): 2741.     CrossRef
  • Metatarsal bone model production using 3D printing and comparison of material properties with results obtained from CT-based modeling and real bone
    Zeliha Coşkun, Talip Çelik, Yasin Kişioğlu
    Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine.2023; 237(4): 481.     CrossRef
  • Ergiyik filament ile imalat yönteminde kullanılan PLA ve çelik katkılı PLA filament malzemelerin mekanik ve fiziksel özelliklerinin incelenmesi
    Ali Osman ER, Osman Muhsin AYDINLI
    Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi.2023; 39(2): 1285.     CrossRef
  • INFLUENCE OF FDM PROCESS VARIABLES' ON TENSILE STRENGTH, WEIGHT, AND ACTUAL PRINTING TIME WHEN USING ABS FILAMENT
    Tahseen Fadhil Abbas, Ali Hind Basil , Kalida Kadhim Mansor
    International Journal of Modern Manufacturing Technologies.2022; 14(1): 7.     CrossRef
  • Analysis of Correlation between FDM Additive and Finishing Process Conditions in FDM Additive-Finishing Integrated Process for the Improved Surface Quality of FDM Prints
    Ji Won Yu, Hyung Jin Jeong, Jae Hyung Park, Dong Hun Lee
    Journal of the Korean Society for Precision Engineering.2022; 39(2): 159.     CrossRef
  • Regression Model for Optimization and Prediction of Tensile Strength of a PLA Prototype Printed
    Lahcen Hamouti, Omar El Farissi, Omar Outemssa
    Journal of Advanced Computational Intelligence and Intelligent Informatics.2022; 26(6): 952.     CrossRef
  • Effect of extruder temperature and printing speed on the tensile strength of fused deposition modeling (FDM) 3D printed samples: a meta-analysis study
    Sajjad Farashi, Fariborz Vafaee
    International Journal on Interactive Design and Manufacturing (IJIDeM).2022; 16(1): 305.     CrossRef
  • Effects of raster angle in single- and multi-oriented layers for the production of polyetherimide (PEI/ULTEM 1010) parts with fused deposition modelling
    Musa Yilmaz, Necip Fazil Yilmaz
    Materials Testing.2022; 64(11): 1651.     CrossRef
  • Optimisation of Strength Properties of FDM Printed Parts—A Critical Review
    Daniyar Syrlybayev, Beibit Zharylkassyn, Aidana Seisekulova, Mustakhim Akhmetov, Asma Perveen, Didier Talamona
    Polymers.2021; 13(10): 1587.     CrossRef
  • Influence of 3D printing process parameters on the mechanical properties and mass of PLA parts and predictive models
    João Araújo Afonso, Jorge Lino Alves, Gabriela Caldas, Barbara Perry Gouveia, Leonardo Santana, Jorge Belinha
    Rapid Prototyping Journal.2021; 27(3): 487.     CrossRef

Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:

Include:

Effect of Process Parameters on Mechanical Strength of Fabricated Parts using the Fused Deposition Modelling Method
J. Korean Soc. Precis. Eng.. 2019;36(8):705-712.   Published online August 1, 2019
Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:
Include:
Effect of Process Parameters on Mechanical Strength of Fabricated Parts using the Fused Deposition Modelling Method
J. Korean Soc. Precis. Eng.. 2019;36(8):705-712.   Published online August 1, 2019
Close

Figure

  • 0
  • 1
  • 2
  • 3
Effect of Process Parameters on Mechanical Strength of Fabricated Parts using the Fused Deposition Modelling Method
Image Image Image Image
Fig. 1 Builder M2MA014A 3D printer
Fig. 2 Fabricated sample of PLA materials
Fig. 3 Specimens after tensile test
Fig. 4 Main effects plot for S/N ratios
Effect of Process Parameters on Mechanical Strength of Fabricated Parts using the Fused Deposition Modelling Method

PLA Physical and Mechanical Properties

Physical properties and mechanical
properties
Nominal value
Physical properties
Specific gravity (23°C) 1.24-1.26 g/cm3
Melt mass-flow rate (MFR)
210°C/2.16 kg 6.0-78 g/10 min
190°C/2.16 kg 1.5-36 g/10 min
Molding shrinkage
Flow: 73°F 3.7E-3-4.1E-3 mm/mm
Mechanical properties
Tensile modulus (23°C) 2020-3550 MPa
Tensile strength yield (23°C) 15.5-72 MPa
Tensile strength break (23°C) 14-70 MPa
Tensile elongation yield (23°C) 9.8-10%
Tensile elongation break (23°C) 0.50-9.2%
Flexural modulus (23°C) 2392-4930 MPa
Flexural strength (23°C) 48-110 MPa

3D Printer specification

Resolution Low quality: 0.3-0.2 mm
Normal quality: 0.2-0.1 mm
High quality: 0.1-0.05 mm
Print speed Solo: 10-200 mm/s
Dual: 10-80 mm/s
Nozzle diameter 0.4 mm
Filament 1.75 mm PLA / PVA / Wood-Bronzfill
Operating temp. nozzle Solo: 180-250°C
Dual: 180-250°C

Levels and factors of process parameters

Factor description Level
1 2 3
Printing speed (mm/s) 48 60 72
Layer thickness (mm) 0.1 0.15 0.2
Printing temperature (oC) 200 210 220

Noise parameter and corresponding levels

Factor description Level
1 2
Conditioning temperature (oC) 23 30

Experimental layout using L9 orthogonal array

Experiment Printing
speed
Layer
thickness
Extrusion
temperature
1,10 48 0.1 200
2,11 48 0.15 210
3,12 48 0.2 220
4,13 60 0.1 210
5,14 60 0.15 220
6,15 60 0.2 200
7,16 72 0.1 220
8,17 72 0.15 200
9,18 72 0.2 210

Recorded results of tensile testing

Experiment Ultimate
Force 1
Ultimate
Force 2
Average
ultimate
force
S/N
1 523.91 513.99 518.95 54.30
2 591.54 589.97 590.75 55.43
3 573.68 613.19 593.43 55.45
4 562.84 526.60 544.72 54.71
5 590.37 596.79 593.58 55.47
6 477.86 474.44 476.15 53.55
7 585.74 594.54 590.14 55.42
8 521.60 507.97 514.79 54.23
9 485.27 490.01 487.64 53.76

Optimal value from regression and signal to noise

Type Printing
speed
(mm/s)
Layer
thickness
(mm)
Printing
temp
(oC)
Estimated
force
(N)
Regression 48 0.1 220 620.664
Signal to noise 48 0.15 220 599.059

Comparison between result from tensile testing and mathematical mode

Sample
No.
Method Printing speed
(mm/s)
Layer thickness
(mm)
Printing temp
(oC)
Force result
(N)
Estimated force
(N)
Differrent
(%)
19 Both 72 0.2 200 336.242 467.309 -38.98%
20 Both 72 0.2 200 342.067 467.309 -36.61%
21 Regression 48 0.1 220 575.932 620.664 -7.77%
22 Regression 48 0.1 220 598.311 620.664 -3.74%
23 S-N 48 0.15 220 592.868 599.059 -1.04%
24 S-N 48 0.15 220 596.643 599.059 -0.40%

Summarized results from all testing

Sample
No.
Printing
speed
(mm/s)
Layer
thickness
(mm)
Printing
temp
(oC)
Force
result
(N)
22 48 0.1 220 598.311
14 60 0.15 220 596.786
24 48 0.15 220 596.643
16 72 0.1 220 594.537
23 48 0.15 220 592.868
2 48 0.15 210 591.54
5 60 0.15 220 590.373
11 48 0.15 210 589.967
7 72 0.1 220 585.739
21 48 0.1 220 575.932
3 48 0.2 220 573.679
12 48 0.2 220 565.187
4 60 0.1 210 562.843
13 60 0.1 210 526.603
1 48 0.1 200 523.909
8 72 0.15 200 521.604
10 48 0.1 200 513.991
17 72 0.15 200 507.967
18 72 0.2 210 490.006
9 72 0.2 210 485.269
6 60 0.2 200 477.862
15 60 0.2 200 474.437
20 72 0.2 200 342.067
19 72 0.2 200 336.242
Table 1 PLA Physical and Mechanical Properties
Table 2 3D Printer specification
Table 3 Levels and factors of process parameters
Table 4 Noise parameter and corresponding levels
Table 5 Experimental layout using L9 orthogonal array
Table 6 Recorded results of tensile testing
Table 7 Optimal value from regression and signal to noise
Table 8 Comparison between result from tensile testing and mathematical mode
Table 9 Summarized results from all testing