Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS
REGULAR

Quantitative Metallographic Analysis of GCr15 Microstructure Using Mask R-CNN

Journal of the Korean Society for Precision Engineering 2020;37(5):361-369.
Published online: May 1, 2020

1 Department of Mechanical Manufacture and Automation, School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Gansu Province, 730050 China

2 School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou, China Key Laboratory of Digital Manufacturing Technology and Application, Ministry of Education, Lanzhou University of Technology, 730050 Lanzhou China

#E-mail: reubensey@gmail.com, TEL: +86-182-1510-7127
• Received: October 28, 2019   • Revised: March 3, 2020   • Accepted: March 30, 2020

Copyright © The Korean Society for Precision Engineering

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

  • 8 Views
  • 0 Download
  • 12 Crossref
  • 13 Scopus
prev next

Citations

Citations to this article as recorded by  Crossref logo
  • Region versus query based instance segmentation models: application to the estimation of aggregated TiO2 particles size distribution measured by SEM
    Paul Monchot, Loïc Coquelin, Nicolas Fischer
    Machine Learning: Science and Technology.2025; 6(2): 020502.     CrossRef
  • Design of novel interpretable deep learning framework for microstructure–property relationships in nickel and cobalt based superalloys
    Aditya Gollapalli, Abhishek Kumar Singh
    Computational Materials Science.2025; 253: 113854.     CrossRef
  • Phase classification of high entropy alloys with composition, common physical, elemental-property descriptors and periodic table representation
    Shuai LI, Jia YANG, Shu LI, Dong-rong LIU, Ming-yu ZHANG
    Transactions of Nonferrous Metals Society of China.2025; 35(6): 1855.     CrossRef
  • Automatic Detection of Dendritic Microstructure Using Computer Vision Deep Learning Models Trained with Phase Field Simulations
    A. Viardin, K. Nöth, C. Pickmann, L. Sturz
    Integrating Materials and Manufacturing Innovation.2025; 14(1): 89.     CrossRef
  • Metallurgical microstructure classification using CNN: A comprehensive study on heat treatment analysis for steel
    N.P. Wankhade, V.P. Sale, R.S. Yadav, P.C. Jikar, S.R. Gadgekar, N.B. Dhokey
    Materials Today: Proceedings.2024;[Epub]     CrossRef
  • Deep Learning Methods for Microstructural Image Analysis: The State-of-the-Art and Future Perspectives
    Khaled Alrfou, Tian Zhao, Amir Kordijazi
    Integrating Materials and Manufacturing Innovation.2024; 13(3): 703.     CrossRef
  • Hardness prediction of high entropy alloys with periodic table representation of composition, processing, structure and physical parameters
    Shuai Li, Shu Li, Dongrong Liu, Jia Yang, Mingyu Zhang
    Journal of Alloys and Compounds.2023; 967: 171735.     CrossRef
  • Transfer Learning in Inorganic Compounds’ Crystal Structure Classification
    Hanan Ahmed Hosni Mahmoud
    Crystals.2023; 13(1): 87.     CrossRef
  • BlobCUT: A Contrastive Learning Method to Support Small Blob Detection in Medical Imaging
    Teng Li, Yanzhe Xu, Teresa Wu, Jennifer R. Charlton, Kevin M. Bennett, Firas Al-Hindawi
    Bioengineering.2023; 10(12): 1372.     CrossRef
  • Image Analysis Technology in the Detection of Particle Size Distribution and the Activity Effect of Low‐Silicon Copper Tailings
    Yuxiang Zhao, Xinzhong Liu, Biwen Liu, Qian Zhang, Dongdong Huan, Chenhui Qiu, Haibin Lv
    Wireless Communications and Mobile Computing.2021;[Epub]     CrossRef
  • Application of deep transfer learning to predicting crystal structures of inorganic substances
    Shuo Feng, Huiyu Zhou, Hongbiao Dong
    Computational Materials Science.2021; 195: 110476.     CrossRef
  • Adoption of Image-Driven Machine Learning for Microstructure Characterization and Materials Design: A Perspective
    Arun Baskaran, Elizabeth J. Kautz, Aritra Chowdhary, Wufei Ma, Bulent Yener, Daniel J. Lewis
    JOM.2021; 73(11): 3639.     CrossRef

Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:

Include:

Quantitative Metallographic Analysis of GCr15 Microstructure Using Mask R-CNN
J. Korean Soc. Precis. Eng.. 2020;37(5):361-369.   Published online May 1, 2020
Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:
Include:
Quantitative Metallographic Analysis of GCr15 Microstructure Using Mask R-CNN
J. Korean Soc. Precis. Eng.. 2020;37(5):361-369.   Published online May 1, 2020
Close

Figure

  • 0
  • 1
  • 2
  • 3
  • 4
Quantitative Metallographic Analysis of GCr15 Microstructure Using Mask R-CNN
Image Image Image Image Image
Fig. 1 SEM image of the GCr15 Microstructure, JSM-6700 SEM (1280 × 1024 pixels)6 (Adapted from Ref. 6 on the basis of OA)
Fig. 2 Scanning electronic microscopic images of the GCr15 microstructure by the JSM 6700F NT instrument
Fig. 3 Locating the blobs using bounding boxes
Fig. 4 Segmentation masks on each blob within the bounding boxes
Fig. 5 Using the blob counter to label each blob from i = 1 to the Nth term
Quantitative Metallographic Analysis of GCr15 Microstructure Using Mask R-CNN

Blob number, area and perimeter of blobs in SEM image A (Pixel value)

Blob
number
Blob area
(Pixel)
Blob perimeter
(Pixel)
1 8661.0 2887.0
2 7830.0 2610.0
3 8334.0 2778.0
4 6727.0 2242.3
5 1113.0 371.0
6 1908.0 636.0
7 10886.0 3628.7
8 1335.0 445.0
9 1221.0 407.0
10 1145.0 381.7
11 1258.0 419.3
12 932.0 310.7
13 1330.0 443.3
14 2181.0 727.0
15 1441.0 480.3
16 2494.0 831.3
17 1396.0 465.3
18 779.0 259.7
19 867.0 289.0
20 1690.0 563.3
21 623.0 207.7
22 10421.0 3473.7
23 881.0 293.7
24 627.0 209.0
25 534.0 178.0
26 1308.0 436.0
27 840.0 280.0
28 850.0 283.3
29 712.0 237.3
30 580.0 193.3
31 1200.0 400.0
32 423.0 141.0
33 476.0 158.7
34 1024.0 341.3
35 494.0 164.7
36 1440.0 480.0
37 785.0 261.7
38 750.0 250.0
39 451.0 150.3
40 2146.0 715.3
41 371.0 123.7
42 1920.0 640.0
43 642.0 214.0
44 573.0 191.0
45 332.0 110.7
46 627.0 209.0
47 289.0 96.3
48 752.0 250.7
49 304.0 101.3
50 1818.0 606.0
51 414.0 138.0
52 375.0 125.0
53 384.0 128.0
54 289.0 96.3
55 497.0 165.7
56 517.0 172.3
57 345.0 115.0
58 268.0 89.3

Blob number, area and perimeter of Blobs in SEM image A (Pixel value)

Blob
number
Blob area
(Pixel)
Blob perimeter
(Pixel)
1 2010.0 670.0
2 4942.0 1647.3
3 4318.0 1439.3
4 4090.0 1363.3
5 541.0 180.3
6 1077.0 359.0
7 1005.0 335.0
8 1001.0 333.7
9 932.0 310.7
10 1316.0 438.7
11 1153.0 384.3
12 1263.0 421.0
13 954.0 318.0
14 2189.0 729.7
15 1641.0 547.0
16 637.0 212.3
17 1188.0 396.0
18 1631.0 543.7
19 1174.0 391.3
20 2781.0 927.0
21 593.0 197.7
22 1276.0 425.3
23 1260.0 420.0
24 1382.0 460.7
25 703.0 234.3
26 1178.0 392.7
27 453.0 151.0
28 452.0 150.7
29 776.0 258.7
30 1660.0 553.3
31 691.0 230.3
32 2612.0 870.7
33 383.0 127.7
34 393.0 131.0
35 243.0 81.0
36 731.0 243.7
37 521.0 173.7
38 782.0 260.7
39 552.0 184.0
40 415.0 138.3
41 529.0 176.3
42 403.0 134.3
43 2398.0 799.3
44 502.0 167.3
45 307.0 102.3
46 201.0 67.0
47 227.0 75.7
48 248.0 82.7
49 1837.0 612.3
50 225.0 75.0
Training Configurations
BACKBONE resnet101
BACKBONE_STRIDES [4, 8, 16, 32, 64]
BATCH_SIZE 1
BBOX_STD_DEV [0.1 0.1 0.2 0.2]
COMPUTE_BACKBONE_SHAPE None
DETECTION_MAX_INSTANCES 100
DETECTION_MIN_CONFIDENCE 0.6
DETECTION_NMS_THRESHOLD 0.3
FPN_CLASSIF_FC_LAYERS_SIZE 1024
GPU_COUNT 1
GRADIENT_CLIP_NORM 5.0
IMAGES_PER_GPU 1
IMAGE_MAX_DIM 1024
IMAGE_META_SIZE 14
IMAGE_MIN_DIM 800
IMAGE_MIN_SCALE 0
IMAGE_RESIZE_MODE square
IMAGE_SHAPE [1024 1024 3]
LEARNING_MOMENTUM 0.9
LEARNING_RATE 0.001
LOSS_WEIGHTS {'rpn_class_loss': 1.0,
rpn_bbox_loss':1.0,
mrcnn_class_loss':1.0,
mrcnn_bbox_loss':1.0,
mrcnn_mask_loss':1.0}
MASK_POOL_SIZE 14
MASK_SHAPE [28, 28]
MAX_GT_INSTANCES 100
MEAN_PIXEL [123.7 116.8 103.9]
MINI_MASK_SHAPE (56, 56)
NAME blob
NUM_CLASSES 2
POOL_SIZE 7
POST_NMS_ROIS_INFERENCE 1000
POST_NMS_ROIS_TRAINING 2000
ROI_POSITIVE_RATIO 0.33
RPN_ANCHOR_RATIOS [0.5, 1, 2]
RPN_ANCHOR_SCALES (32, 64, 128, 256, 512)
RPN_ANCHOR_STRIDE 1
RPN_BBOX_STD_DEV [0.1 0.1 0.2 0.2]
RPN_NMS_THRESHOLD 0.7
RPN_TRAIN_ANCHORS_PER_IMAGE 256
STEPS_PER_EPOCH 100
TOP_DOWN_PYRAMID_SIZE 256
TRAIN_BN False
TRAIN_ROIS_PER_IMAGE 200
USE_MINI_MASK True
USE_RPN_ROIS True
VALIDATION_STEPS 50
WEIGHT_DECAY 0.0001
Table 1 Blob number, area and perimeter of blobs in SEM image A (Pixel value)
Table 2 Blob number, area and perimeter of Blobs in SEM image A (Pixel value)