Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS
REGULAR

텔레스코픽 붐형 지게차의 붐 최적 설계

Optimal Design of Boom for Telescopic Boom Type Forklift Truck

Journal of the Korean Society for Precision Engineering 2020;37(6):457-464.
Published online: June 1, 2020

1 한국산업기술대학교 기계설계공학과

1 Department of Mechanical Design Engineering, Korea Polytechnic University

#E-mail: jhlee@kpu.ac.kr, TEL: +82-31-8041-0425
• Received: January 3, 2020   • Revised: March 11, 2020   • Accepted: March 19, 2020

Copyright © The Korean Society for Precision Engineering

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

  • 7 Views
  • 0 Download
  • 6 Crossref
  • 6 Scopus
prev next

Citations

Citations to this article as recorded by  Crossref logo
  • Design and fabrication of a device for cleaning greenhouse roofs
    Ahmed Amin, Xiaochan Wang, Zhao Lianyuan, Yinyan Shi, Ren Xiaoyan, Mahmoud Okasha, Reda Hassanien Emam Hassanien
    Heliyon.2025; 11(2): e41991.     CrossRef
  • Active Closed-Loop Transfer Learning-Based Surrogate Models for Telescopic Boom Forklift Optimization
    Jingliang Lin, Haiyan Li, Yunbao Huang, Guiming Liang, Sheng Zhou, Zeying Huang
    IEEE Access.2024; 12: 112517.     CrossRef
  • Telescopic forklift selection through a novel interval-valued Fermatean fuzzy PIPRECIA–WISP approach
    Ömer Faruk Görçün, Alptekin Ulutaş, Ayşe Topal, Fatih Ecer
    Expert Systems with Applications.2024; 255: 124674.     CrossRef
  • Multi-Objective Surrogate Modeling Through Transfer Learning for Telescopic Boom Forklift
    Jingliang Lin, Haiyan Li, Yunbao Huang, Junjie Liang, Sheng Zhou, Zeying Huang, Guiming Liang
    IEEE Access.2023; 11: 11629.     CrossRef
  • Optimal Design of 50 ton Hydraulic Breaker Housing
    Jai Hak Lee, Dong Ju Lee, Jun Young Choi
    Journal of the Korean Society for Precision Engineering.2022; 39(4): 269.     CrossRef
  • On-Line Model Predictive Control for Energy Efficiency in Data Center
    Min Sik Chu, Hyun Ah Kim, Kyu Jong Lee, Ji Hoon Kang
    Journal of the Korean Society for Precision Engineering.2021; 38(12): 943.     CrossRef

Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:

Include:

Optimal Design of Boom for Telescopic Boom Type Forklift Truck
J. Korean Soc. Precis. Eng.. 2020;37(6):457-464.   Published online June 1, 2020
Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:
Include:
Optimal Design of Boom for Telescopic Boom Type Forklift Truck
J. Korean Soc. Precis. Eng.. 2020;37(6):457-464.   Published online June 1, 2020
Close

Figure

  • 0
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
Optimal Design of Boom for Telescopic Boom Type Forklift Truck
Image Image Image Image Image Image Image Image Image Image Image Image Image Image
Fig. 1 Photo of telescopic boom type forklift truck
Fig. 2 Parts and shape information of telescopic boom
Fig. 3 Boundary & Load conditions
Fig. 4 Maximum von-mises stress for initial model
Fig. 5 Name of factors
Fig. 6 Maximum von-mises stress for modified model
Fig. 7 Main effect plot for stress
Fig. 8 Main effect plot for mass
Fig. 9 Interaction plot for mass
Fig. 10 Main effect plot for stress
Fig. 11 Interaction plot for stress
Fig. 12 Optimization plot 1
Fig. 13 Optimization plot 2
Fig. 14 Maximum von-mises stress at optimum case
Optimal Design of Boom for Telescopic Boom Type Forklift Truck

Modified Factors

T1[mm] T2[mm] T3[mm] T4[mm]
Initial 8 6 8 6
Modified 10 8 10 8

Levels of factors

Factor Minimum [mm] Initial [mm] Maximum [mm]
T1 6 8 10
T2 4 6 8
T3 6 8 10
T4 4 6 8

Results of experiments

Run T1 T2 T3 T4 Y1[kg] Y2[MPa]
1 10 8 6 4 117.9 428.87
2 6 4 6 8 102.77 657.14
3 10 8 6 8 133.32 414.75
4 6 4 6 4 87.078 673.06
5 10 4 6 8 117.9 482.16
6 6 8 10 8 135.46 504.88
7 10 4 6 4 102.47 501.06
8 10 8 10 8 150.21 385.76
9 10 4 10 4 119.94 457.26
10 8 6 8 6 118.94 494.22
11 6 4 10 8 120.06 599.67
12 6 8 6 4 102.77 591.57
13 10 4 10 8 135.07 438.58
14 6 8 6 8 118.45 557.08
15 10 8 10 4 135.07 392.72
16 6 4 10 4 104.66 614.9
17 6 8 10 4 120.06 515.13

Analysis of variance for stress

Source DF Adj SS Adj MS F-Value P-Value
T1 1 82183 82182.6 290.35 0
T2 1 20129 20128.5 71.11 0
T3 1 6857 6856.7 24.22 0
T4 1 2503 2503 8.84 0.013
Curvature 1 214 214.4 0.76 0.403
Error 5 1373 274.5

Central composite design

Run T1 T2 T3 T4 Y1[kg] Y2[MPa]
1 6 4 10 4 104.66 614.9
2 10 8 6 4 117.9 428.87
3 8 6 8 6 118.97 494.22
4 8 6 8 6 118.97 494.22
5 8 6 10 6 127.6 474.38
6 8 6 8 8 126.68 488
7 8 6 8 6 118.97 494.22
8 8 6 8 6 118.97 494.22
9 10 8 10 4 135.07 392.72
10 6 8 6 8 118.45 557.08
11 6 4 6 4 87.078 673.06
12 8 8 8 6 126.68 467.16
13 8 6 8 4 111.27 502.15
14 8 6 8 6 118.97 494.22
15 8 4 8 6 111.27 537.71
16 10 8 6 8 133.32 414.75
17 6 8 10 8 135.46 504.88
18 8 6 8 6 118.97 494.22
19 8 6 6 6 110.31 516.33
20 6 4 10 8 120.06 599.67
21 6 8 6 4 102.77 591.57
22 10 4 10 8 135.07 438.58
23 6 4 6 8 102.77 657.14
24 6 8 10 4 120.06 515.13
25 10 4 10 4 119.94 457.26
26 8 6 8 6 118.97 494.22
27 6 6 8 6 111.42 576.85
28 10 8 10 8 150.21 385.76
29 10 4 6 8 117.9 482.16
30 10 4 6 4 102.47 501.06
31 10 6 8 6 126.49 431.76

Analysis of variance for mass

Source DF Adj SS Adj MS F-Value P-Value
T1 1 1022.15 1122.15 11694936.7 0
T2 1 1068.79 1068.79 12228549.7 0
T3 1 1337.51 1337.51 15303129.17 0
T4 1 1068.79 1068.79 12228549.7 0
T1*T1 1 0 0 4.93 0.039
T3*T3 1 0 0 4.93 0.039
T1*T2 1 0.07 0.07 791.4 0
T1*T3 1 0.01 0.01 159.31 0
T1*T4 1 0.07 0.07 791.4 0
T2*T3 1 0.08 0.08 949 0
T3*T4 1 0.08 0.08 949 0
Error 19 0 0

Analysis of variance for stess

Source DF Adj SS Adj MS F-Value P-Value
T1 1 102357 102357 5590.12 0
T2 1 27505 27505 1502.13 0
T3 1 10694 10694 584.04 0
T4 1 1228 1228 67.09 0
T1*T1 1 373 373 20.36 0
T2*T2 1 250 250 13.68 0.001
T1*T2 1 887 887 48.46 0
T1*T3 1 526 526 28.73 0
Error 22 403 18

Results of optimization

T1 T2 T3 T4 Y1[kg) Y2[MPa]
Minitab 10 8 6.0243 4 118.0 432.963
Workbench 10 8 6 4 117.9 428.87
Accuracy [%] 99.92 99.05
Table 1 Modified Factors
Table 2 Levels of factors
Table 3 Results of experiments
Table 4 Analysis of variance for stress
Table 5 Central composite design
Table 6 Analysis of variance for mass
Table 7 Analysis of variance for stess
Table 8 Results of optimization