Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS
REGULAR

Application of Bat algorithm for Improvement of Surface Integrity in Turning of AISI 304 Austenitic Stainless Steel

Journal of the Korean Society for Precision Engineering 2021;38(4):237-244.
Published online: April 1, 2021

1 Hanoi University of Industry, 298, Cau Dien Street, Bac Tu Liem District, Hanoi Vietnam

#Hoi Tran Viet / E-mail: hoitv@haui.edu.vn, TEL: +84-973383303
• Received: January 11, 2021   • Revised: March 2, 2021   • Accepted: March 8, 2021

Copyright © The Korean Society for Precision Engineering

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

  • 10 Views
  • 0 Download
  • 1 Crossref
  • 1 Scopus
next

Citations

Citations to this article as recorded by  Crossref logo
  • Multi-Objective Optimization for Turning Process of 304 Stainless Steel Based on Dung Beetle Optimizer-Back Propagation Neural Network and Improved Particle Swarm Optimization
    Huan Xue, Tao Li, Jie Li, Yansong Zhang, Shiyao Huang, Yongchun Li, Chongwen Yang, Wenqian Zhang
    Journal of Materials Engineering and Performance.2024; 33(8): 3787.     CrossRef

Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:

Include:

Application of Bat algorithm for Improvement of Surface Integrity in Turning of AISI 304 Austenitic Stainless Steel
J. Korean Soc. Precis. Eng.. 2021;38(4):237-244.   Published online April 1, 2021
Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:
Include:
Application of Bat algorithm for Improvement of Surface Integrity in Turning of AISI 304 Austenitic Stainless Steel
J. Korean Soc. Precis. Eng.. 2021;38(4):237-244.   Published online April 1, 2021
Close

Figure

  • 0
  • 1
  • 2
  • 3
  • 4
  • 5
Application of Bat algorithm for Improvement of Surface Integrity in Turning of AISI 304 Austenitic Stainless Steel
Image Image Image Image Image Image
Fig. 1 Mori Seiki SL-253 CNC lathe
Fig. 2 Mitutoyo Surftest SV-2100 surface roughness tester
Fig. 3 XRD system for measuring residual stress
Fig. 4 Normal probability plots for Ra and σ
Fig. 5 Flow chart of Pareto optimal using BA
Fig. 6 Pareto front points
Application of Bat algorithm for Improvement of Surface Integrity in Turning of AISI 304 Austenitic Stainless Steel

Chemical composition of AISI 304 austenitic stainless steel

Composition C Cr Ni Si Mn P S
wt% 0.07 18.49 8.15 0.57 0.76 0.03 0.009

Physical properties of AISI 304 austenitic stainless steel

Specific heat
capacity
[J·kg-1·K-1]
Elastic
modulus
[GPa]
Coefficient
of thermal
expansion
[10-6·K-1]
Thermal
conductivity
[W·m-1 K-1]
Density
[g/cm3]
500 200 17.3 16.3 7.93

Cutting ranges and levels

Cutting parameters Level
1 2 3
Cutting speed Vc [m/min] 230 260 290
Feed rate f [mm/rev] 0.08 0.14 0.20
Depth of cut ap [mm] 0.10 0.25 0.50

Experimental results

No. Vc
[m/min]
f
[mm/rev]
ap
[mm]
Ra
[μm]
σ
[MPa]
1 290 0.2 0.25 1.58 201.6
2 260 0.14 0.25 0.73 125.9
3 260 0.14 0.25 0.73 125.9
4 230 0.2 0.5 1.72 240.8
5 230 0.14 0.1 0.93 136.3
6 260 0.08 0.5 0.45 143.1
7 260 0.2 0.1 1.55 233.3
8 260 0.14 0.25 0.73 125.9
9 260 0.08 0.1 0.44 131.7
10 230 0.2 0.25 1.66 204.5
11 290 0.14 0.1 0.87 172.5
12 290 0.08 0.25 0.48 166.7
13 230 0.14 0.5 0.85 226.5
14 230 0.08 0.25 0.64 143.2
15 290 0.14 0.5 1.02 148.3

ANOVA results for surface roughness

Source DF Seq SS Contribution [%] Adj SS Adj MS F-Value P-Value
Model 9 2.83234 99.49 2.83234 0.31470 109.05 0.000
Vc 1 0.08893 3.12 0.00109 0.00109 0.38 0.566
f 1 2.45459 86.22 2.01253 2.01253 697.39 0.000
ap 1 0.00763 0.27 0.00356 0.00356 1.23 0.317
Vc 2 1 0.08038 2.82 0.05363 0.05363 18.58 0.008
f 2 1 0.17579 6.18 0.19252 0.19252 66.71 0.000
ap 2 1 0.00770 0.27 0.01057 0.01057 3.66 0.114
Vc*f 1 0.00114 0.04 0.00086 0.00086 0.30 0.609
Vc*ap 1 0.01384 0.49 0.01590 0.01590 5.51 0.066
f *ap 1 0.00235 0.08 0.00235 0.00235 0.81 0.408
Error 5 0.01443 0.51 0.01443 0.00289
Lack-of-Fit 3 0.01443 0.51 0.01443 0.00481
Pure error 2 0.00000 0.00 0.00000 0.00000
Total 14 2.84677 100.00

ANOVA results for residual stress

Source DF Seq SS Contribution [%] Adj SS Adj MS F-Value P-Value
Model 9 22657.0 91.62 22657.0 2517.45 6.07 0.031
Vc 1 984.6 3.98 196.5 196.47 0.47 0.522
f 1 10297.3 41.64 4976.1 4976.09 12.00 0.018
ap 1 1211.0 4.90 70.1 70.05 0.17 0.698
Vc 2 1 1620.0 6.55 1638.4 1638.43 3.95 0.104
f 2 1 3376.4 13.65 2598.1 2598.06 6.27 0.054
ap 2 1 1709.7 6.91 1162.7 1162.71 2.80 0.155
Vc*f 1 97.0 0.39 78.7 78.69 0.19 0.681
Vc*ap 1 2731.4 11.04 3241.7 3241.69 7.82 0.038
f *ap 1 629.4 2.55 629.4 629.45 1.52 0.273
Error 5 2072.7 8.38 2072.7 414.53
Lack-of-Fit 3 2072.7 8.38 2072.7 690.89
Pure error 2 0.0 0.00 0.0 0.00
Total 14 24729.7 100.00

Parameters of the MOBA

Parameters Values
Loudness, A 0.8
Pulse rate, r 0.8
Minimize frequency, fmin 0
Maximize frequency, fmax 2
Number of iteration, t 1,000
Bat population, n 100
Number points of Pareto, N 1,000

Optimal solutions achieved by MOBA

No. Vc
[m/min]
f
[mm/rev]
ap
[mm]
Ra
[μm]
σ
[MPa]
1 252.779 0.100 0.201 0.516 117.987
2 261.006 0.080 0.258 0.430 124.112
3 258.689 0.088 0.235 0.453 120.366
4 257.074 0.092 0.226 0.468 119.189
5 254.277 0.098 0.210 0.500 118.099
6 259.661 0.085 0.243 0.443 121.630
7 256.727 0.093 0.223 0.472 118.929
8 257.665 0.090 0.229 0.461 119.616
9 255.833 0.095 0.219 0.481 118.571
10 262.242 0.080 0.302 0.427 126.941

Results of confirmation test

Experimental
result
Predicted
value
Experimental
value
Error
[%]
Ra [μm] 0.461 0.472 2.4
σ [MPa] 119.616 121.658 1.7
Table 1 Chemical composition of AISI 304 austenitic stainless steel
Table 2 Physical properties of AISI 304 austenitic stainless steel
Table 3 Cutting ranges and levels
Table 4 Experimental results
Table 5 ANOVA results for surface roughness
Table 6 ANOVA results for residual stress
Table 7 Parameters of the MOBA
Table 8 Optimal solutions achieved by MOBA
Table 9 Results of confirmation test