Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS
REGULAR

음의 포아송비 구조를 활용한 협소 공간 극복 이동로봇

Mobile Robot Overcoming Narrow Space Using Negative Poisson’s Ratio

Journal of the Korean Society for Precision Engineering 2021;38(7):479-490.
Published online: July 1, 2021

1 금오공과대학교 기계시스템공학과

1 Department of Mechanical System Engineering, Kumoh National Institute of Technology

#E-mail: bschu@kumoh.ac.kr, TEL: +82-54-478-7398
• Received: March 20, 2021   • Revised: May 7, 2021   • Accepted: May 11, 2021

Copyright © The Korean Society for Precision Engineering

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

  • 8 Views
  • 0 Download
  • 1 Crossref
  • 1 Scopus
prev next

Citations

Citations to this article as recorded by  Crossref logo
  • Auxetic and Holonomic Mobile Robot for Enhanced Navigation in Constrained Terrains
    Cheonghwa Lee, Jinwon Kim, Hyeongyeong Jeong, Hyunbin Park, Baeksuk Chu
    Journal of Field Robotics.2025; 42(8): 4414.     CrossRef

Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:

Include:

Mobile Robot Overcoming Narrow Space Using Negative Poisson’s Ratio
J. Korean Soc. Precis. Eng.. 2021;38(7):479-490.   Published online July 1, 2021
Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:
Include:
Mobile Robot Overcoming Narrow Space Using Negative Poisson’s Ratio
J. Korean Soc. Precis. Eng.. 2021;38(7):479-490.   Published online July 1, 2021
Close

Figure

  • 0
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
Mobile Robot Overcoming Narrow Space Using Negative Poisson’s Ratio
Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image
Fig. 1 Robot examples developed for non-structured environment3-4 (Adapted from Refs. 2, 3, and 4 on the basis of OA)
Fig. 2 Structure of a body with negative Poisson’s ratio
Fig. 3 Design of the body frame
Fig. 4 Robot body assembly
Fig. 5 Comparison between differential drive and omni-directional drive
Fig. 6 Mecanum wheel
Fig. 7 Moving mechanism of omni-directional mobi1ity
Fig. 8 Actual view of the size adjustable robot
Fig. 9 Hardware design
Fig. 10 Results of validation experiments of the 1D-Lidar sensor
Fig. 11 Distance measurement using 1D-Lidar sensors
Fig. 12 Distance measurement using 1D-Lidar sensors
Fig. 13 Scanning the width of the entrance using a 1D-Lidar sensor
Fig. 14 Three sides view of size adjustable mechanism
Fig. 15 Actual view of the size adjustable robot before and after shrinkage
Fig. 16 Center point movement before calibration
Fig. 17 Center point movement calibration method
Fig. 18 Calibration value for robot center point movement during shrinkage
Fig. 19 Center point movement after calibration
Fig. 20 Testbed of the environmental recognition experiment
Fig. 21 Process of the environmental recognition experiment
Fig. 22 Trajectory of the size adjustable robot with environmental recognition when the width of the narrow path is 325 mm
Fig. 23 Position and orientation of the size adjustable robot with environmental recognition when the width of the narrow path is 325 mm
Fig. 24 Trajectory of the size adjustable robot with environmental recognition when the width of the narrow path is 310 mm
Fig. 25 Position and orientation of the size adjustable robot with environmental recognition when the width of the narrow path is 310 mm
Fig. 26 Trajectories of the size adjustable robot with environmental recognition under various experimental conditions
Mobile Robot Overcoming Narrow Space Using Negative Poisson’s Ratio

Simulation results of the width shrinkage

(Unit: mm)

a t b a : b k k' Ratio [%]
100 8 30 1 : 0.3 82 66 19.5
35 1 : 0.35 98.2 76 22.6
40 1 : 0.4 116 66 43.1
45 1 : 0.45 145 54 62.8
50 1 : 0.5 168 86 48.8

Simulation results of the length shrinkage

(Unit: mm)

a t b a : b h h' Ratio [%]
100 8 30 1 : 0.3 428.06 401.79 6.1
35 1 : 0.35 419.21 383.27 8.6
40 1 : 0.4 415.89 350.33 13.7
45 1 : 0.45 412.01 327.33 20.6
50 1 : 0.5 408.78 315.68 22.8

Specification of the size adjustable robot components

Component Model Specification
Main controller Arduino MEGA Analog & Digital I/O Serial communication
Camera module ESP8266 Arduino UNO Built-in ESO8266-12F & SD card slot
Bluetooth module HC-06 Detect range [mm]: 200-1,500
1D-Lidar sensor LIDER-Lite V4 LED Detect distance [mm]: 50-10,000
Camera sensor OV2640 Input voltage [V]: 3.3/5 Support JPEG
Drive motor Dynamixel MX-64R Input voltage [V]: 12
Stall current [A]: 4.1
Stall torque [N]: 6
Linear motor L12-30PT-10 Input voltage [V]: 12
Rated output [N]: 31

Result data of size control experiment without calibration

Center point
movement
Δx
[mm]
Δy
[mm]
Δθ
[deg]
Maximum 78.25 60.64 37.77
Minimum 18.65 7.51 21.96
Average 30.55 28.76 43.27

Result data of size control experiment with calibration

Center point
movement
Δx
[mm]
Δy
[mm]
Δθ
[deg]
Maximum 10.46 12.47 50.01
Minimum 0.13 8.07 89.08
Average 5.11 8.88 60.08

Initial and final positions of the size adjustable robot

Cases
[mm]
x* [mm] y* [mm] ϕ [deg] Results
Ini. Fin. Ini. Fin. Ini. Fin.
310 1,491 760 728 1,101 14.62 -0.65 Fail
325 1,485 391 778 1,105 15.20 -0.65 Success
340 1,529 407 647 1,102 16.15 -0.67 Success
355 1,509 405 769 1,102 17.80 -0.61 Success
370 1,488 423 760 1,117 19.87 -0.67 Success
385 1,491 433 728 1,096 16.21 -0.65 Success

Final results of experiments of the size adjustable robot

Size of the robot [mm] Passable width
of the path
[mm]
Maximum Minimum
Width Length Width Length
365 412.01 284 331 ≥ 325
Table 1 Simulation results of the width shrinkage (Unit: mm)
Table 2 Simulation results of the length shrinkage (Unit: mm)
Table 3 Specification of the size adjustable robot components
Table 4 Result data of size control experiment without calibration
Table 5 Result data of size control experiment with calibration
Table 6 Initial and final positions of the size adjustable robot
Table 7 Final results of experiments of the size adjustable robot