Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS
SPECIAL

유전 알고리즘을 이용한 뱀형 로봇 주행 패턴 생성

Generation of Snake Robot Locomotion Patterns Using Genetic Algorithm

Journal of the Korean Society for Precision Engineering 2021;38(10):717-724.
Published online: October 1, 2021

1 한국로봇융합연구원

2 경북대학교 로봇 및 스마트시스템공학과

3 부경대학교 기계시스템공학과

1 Korea Institute of Robotics & Technology Convergence

2 Department of Robot and Smart System Engineering, Kyungpook National University

3 Department of Mechanical System Engineering, Pukyong National University

#E-mail: mulimkim@kiro.re.kr, TEL: +82-54-240-2531
• Received: June 21, 2021   • Revised: August 25, 2021   • Accepted: September 2, 2021

Copyright © The Korean Society for Precision Engineering

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

  • 8 Views
  • 0 Download
  • 2 Crossref
  • 1 Scopus
prev next

Citations

Citations to this article as recorded by  Crossref logo
  • A Study on I-PID-Based 2-DOF Snake Robot Head Control Scheme Using RBF Neural Network and Robust Term
    Sung-Jae Kim, Jin-Ho Suh
    Journal of Korea Robotics Society.2024; 19(2): 139.     CrossRef
  • A Study on the Design of Error-Based Adaptive Robust RBF Neural Network Back-Stepping Controller for 2-DOF Snake Robot’s Head
    Sung-Jae Kim, Maolin Jin, Jin-Ho Suh
    IEEE Access.2023; 11: 23146.     CrossRef

Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:

Include:

Generation of Snake Robot Locomotion Patterns Using Genetic Algorithm
J. Korean Soc. Precis. Eng.. 2021;38(10):717-724.   Published online October 1, 2021
Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:
Include:
Generation of Snake Robot Locomotion Patterns Using Genetic Algorithm
J. Korean Soc. Precis. Eng.. 2021;38(10):717-724.   Published online October 1, 2021
Close

Figure

  • 0
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
Generation of Snake Robot Locomotion Patterns Using Genetic Algorithm
Image Image Image Image Image Image Image Image Image
Fig. 1 Snake robot with developed algorithm applied
Fig. 2 Structure of snake robot joints and modules
Fig. 3 The angle value of the horizontal/vertical joint
Fig. 4 Algorithm structure for generating locomotion patterns of snake robot
Fig. 5 Flow chart of genetic algorithm
Fig. 6 Fitness value evaluation in simulation environment
Fig. 7 Results of learning curve showing fitness value versus number of generations
Fig. 8 Results of the CPG parameters learning behavior; at the best fitness value in each generation
Fig. 9 Trajectory of the snake robot locomotion in simulator
Generation of Snake Robot Locomotion Patterns Using Genetic Algorithm

Model parameters of single module

Parameters Magnitude
Mass [g] 198.13
Inertia [g/mm2]     224,930.66 510.70 - 801.57 510.70 224 ,   096.58 5 ,   498.14 - 801.51 5,498.14 71,323.45
Center of mass [mm] (-0.24 3.22 22.56)
Volume [mm3] 73,381.13
Kinetic friction coeff. 0.5

Genetic algorithm parameters

Parameters Magnitude
Population 50
Max. generation 31
Crossover chance 0.3
Mutation chance 0.05-0.01
Simulator run time [sec] 10

Optimal CPG parameters

Parameters Symbols Value
Amplitude [hor.] Ah 57.2
Spatial freq. [hor.] Ωh 29.7
Phase shift δ 32.9
Amplitude [ver.] Av 13.2
Spatial freq. [ver.] Ωv 23.6
Table 1 Model parameters of single module
Table 2 Genetic algorithm parameters
Table 3 Optimal CPG parameters