Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS
REGULAR

초고속 제트의 끊어짐 이후의 표적 침투 능력 저하에 대한 이론적 연구

A Theoretical Study on the Decrease in Target Penetration Capability after Break-Up of Hypervelocity Jets

Journal of the Korean Society for Precision Engineering 2022;39(11):869-874.
Published online: November 1, 2022

1 ㈜한화/방산부문

1 Defense Division, Hanwha Co., Ltd. JFIFddDuckydqhttp://ns.adobe.com/xap/1.0/ Adobed     ! 1AQa"q 2#w8B36v7XRr$9bCt%u&Ws'(xy4T5fH  !1AQaq"2B Rbr#u67Ѳ3sTt5v8Sc$4ĂCÔ%UӅFV ?_Aנj- H>>,m*>fzp"TrKkr^r.|_&]|*vPuܶvoQ1mwVJUhu-I"=LniAƕ8"۲ k*ҿ[yu:.vUQ+)%F DHyVBk>Hy8jݹ q~9D4KRmzQ)^ʔ.J%k_tVi5NTjg!'ky|5asOȻ)R۸ߩFMԿ3L4j6dڜ#NIwUF]JqB/(FafJRzq3\G՛ ?~\ 6)6W4m[O^L0E&rRMض*C .]Unl-1 1r#Rj/&QɈ׉˩s6Rj=5Tg.y.·Pӡ:JJS:C8-2u]d&vUz;7p9 5VnL֢"y)">iי(IDDd| Yj0; LRfS:ktYK%*N2^m|&dğth":ey)uPQZW)gcC3Pv&MMWd&Ŵ۲mvTRoժM03*F3Yd6\8,\hݻ kߔi<k NTwSԪmljj[>->ptU%'LR>&EBH$MQAUx[$Z6vi&_a.KIQ{hyƒ j"JOC9eFҝfj;˚Ω<[3_m% lQ@4g=5$(J]Yc-OMq<Ǎ wSzڗ)k$7VIP붾ͯnV+卵*t]iЎD31~SA1éC2u)ʼnQn-Uoi3:grI8ؓWm*G zܕ)ZקJ}Y YlGeJ6cB2I NS3Q>k=KTBT]W6+SOXQgGR? telˊ%-Re\hѯ2TF"C/OJΩ6r[N.0{SpljjX1“jOsӥ;ҭhe}xu`Ք&.)yO̒ Fߑ.$Qw;9Iw2o+RVJMSOj[SoҌZ%;`d$blQ{Ro{Imڌ>3egf\O֝Uzx"䢸g+mv%Gʆ:|V[N'&ס-ޝ'kfE|K,G&˳98Juin/\\Qݿ̋v~Ǩ!rtWU d|E߫R4d}.qPw*Ӭv5YEcn~f5c%MTMkb-F>5JT,})QHg%{("ӔȸWMsYyWNRrkkJr0XドnͫT}r-jj,Ŕʍ\Q2Ri>v$5!]"JB2WɅ)]VԜUc8i|.jeRO6^V.¸ Q&#|ܶ-*uOG%JAtRZRr]FFG\۩w+?'zչSѧt jz>KW&ot{7P&2D;&\\>Q2JzܗAKSfeNn[jRrԕf6,q,F1tRfԗ>vֶևj-&R'Zi2=xv~Elbsvm8=ӛ"ū񕜈BȩlWau[]ٷBߨF~J!|Ipr3R̴#Yp)={7:G{+:\W}n|Q#%)7^-h"Ƒq:M*%J&$T軨I333׎g_- ucBwwjp[6i25$̏bU’ٱRv?G\~#Iͪb7<<}Ezt" q_Inw,7-d,G÷%T* Wg1"䥱kq/A.,_KhqŒxwvo u2ۥۧ.bQ}XκA$֣ +K״ZUNmڸII{.v{5z5ѮRme[moyƾd~cRݾK'j.\i&/S6f|b=5: p!6i_ 4j6=.si˧eƾtS^c.Y^RJVS-Vi3,esi08?H$GvZgg?gi䤟2adw릿:"۪lkSN>q-4kI܋ێe̊qۅgDoѨ9; #T.Q;7#~_Ufstb_'w~Xw1Xk,vcOt._}v}8"(4Z\ۘgk?J?bm_c!g{HZV]Fkk%~gEt)b秴vΰB|꽸}mp~E6ݹv;7P٤v+ri*3Ԣ|'O14_~7nP{7ZU\Vű[ +7󖱅o#:ǥŬ\|3r%TJX]V7ez¨Y]lc|O3V! R zbJ'PnGqVJ"19WVeOF埜EaEJωqCN5Z g-9[S<$sUK5b|7sn\7x qmv##FF\ w[=-43$^ooVSiXօv7iB۴yg>]Vf"r$J3""32!Zh[K%7GvNLs+4nB/B{vlsobJaҺJR:0g%&zR\ S3T[&ִor*ⷳc3ʊO[iozW٨%$gn:ܶWwFBԹjHP&z u&F2\f;ipW73 [; '_̽b;vib!oec dC-tS__$Xs]l9&z$2/N>%'[}b{h/{`{Ji׉׏ YJB/X%}.|+{(S:qz]4_Kѵo`^tY_4S#* ^zvݾMr+TrkQ g.8Ͽ^i>ӈǙvix>$o( ^qt*&t1oJVu-ql5U6jCЉmĻ*"?JT=K'O/|=Vo}l0b}}f?X[?/\JSBe,kP8ETJ==?.p5ފgbU9}ǶdNKk—_$8̸͓ۍ8Di\BԿ-1v{FF]|.^ۅ{vl12׏z7-R7wE?\nh\jN/Kձr_oBw"N QMBZqe-m:ӨSn6j4%!hQ;sv'm4kcM=!8\m[M4{SMliۇ%eֽR&N:{2A8)THLK3Zj[jPBx#BگMf:G1\`edcʮ?|w(-̮vXt,bW2;.ιNHRR#YwTM"<;mk\.foIDjmlJ;vxy7o7i\,KQŊ9d^Mmgc L*.T6tLeIuOH3SJQ3=F/ʿ<9\JM6mN6=<{xkP!F1QR[I$6ُimXu2An2yԒMU q f[IB-'䤯jYm52&JG\zд\~vdg QtHGXw&1Lw+nDEdC1w|YJmvP)HZ>i0BPβә?R:QO["]I_Jʏۍ>QKyu^bycBq4lXF~l [\*N>-J6,Gq(Zr5h]CwYӤU~ʶߑ u*SIv%ZfJ7)! FS*s_\|IŸZ)J ]ܜi4"z[+Z,MOZ))}|Ʀ(RUNIII.S'ˍO~˨rn}M)xxӕ0 eyҵ7YMAB]ӣU:/ѭ*6bcwP͵ "+qēVjŹO|GtY4V j[mLV M -m>",B$ GD1~j6O4|LxnNmqATNR3ε|DŽa[fmn-ڭ+FiK7Pcm;r5 l8r{#-]'nrFh2ruycb;pW=njRqRJ(d mnpckNnʹ+6]tz~E=ʕ l ZZ5jSi3#47.Lcfe`9؏v囜.F\-UZ:*0_<Νu9Lӵm&)_3\^ҹ3"1n1v_|uRʞͫr'iȧN_kH׺8xXrj=\МH)V\ˬ.Xʸ oVRC}ySU9/OBY먌5 ٿwޞ)rw8Ӫi5*5ZΗcGƱ !ZۄlmpjJ -l <R̵/JAպZuq\IdUS 48wXJJtcg4cI~aqߓwŷrm-v)G7yS^7H^-\mŌAq|"m9IBnF㏉9[N+mmy/!KKۉ%n +BdddfFF6FQRN-U5;Sv'm4kcM=Mn)\qιqUd9F%",6MGdT%-+~ f%+y֛^3SrF>6lc(֪vۊN;g._0Sѧ]ETWرkQKzGe9ʨsKA"yC y2\[5 rԭ7Gk5Mzw_4sM3hxЊ'oÍ5jsub )ͪ~tR2H]R͍>̋m6=%(˿(Wrr-܅y5(ܔJ޺YunW̹븹NsqK ]/QR#"ZMDfD|43Qw|._ԡSqTZBg??O Ϥ)/E_U|i}2 9Z?¹0:x'3,whǣ?C y-A~=daJј&M?D1_PS+Oi&;a @;Dž7[ zZC"bv:jjMQk$M RԸ3uA\=wI.AwC"^.{?-\NSiˏ"b}T/}q/ o.1M}R%:-ZniʒL$SgrBW*,Mw'N\ɇ{s\j]VryG'8f`}'N<*/`U숻z CwHq18J+vԕKss4R53/&XTt1bZƟo\=%nO)h$rBi-nKĪ^ ջڜlwkYm[̑+/QrZo%TQ;TLs($2C:s.%+eoNttq۰kK7O0m_t_pZ1SsSM7"mevFZ[w -FJ*T*jФQRg BSu|]g:ɵzjqwmltL.e3sRMچkSmjkmWœިm++¦'tILk*բQ D,PB\lI[9{%Gb R6öۍmX-MaʉA931cs..G4CujQտ[9 }G-xwl)IQz j Ó"rqe&=]꾧֎c)<kӳ+0JrRR3'TnXi^xMF Bު*tIL.[h"2"nKzZe'ZV/RrNYz]8죝n]Ķܩ>^Ժ]u-7^\mZjܣ9+Rmn ߑv?oꋘ?&ƪy^N4o=3-ؔ̿*`}V݁ ƒPu8%$ ݗ]wt;\y\>='OjPIp/nJU8{϶FNMsf"ίNqƹ(+ ݮF2Km |jܴZs%zf*eȫ?]4)I۵nR&FX + [jDh(#哑9q9Eծj8noǕZf\J-l&Z˫}`ӎhyrΉn\űn]9pʌӣ"׮Wt?N4_I_~54#/my1Xr*척aS#DT >q ssΛW;3oUaJSRMDgQnt:Ql,/ ܷfRqiM Ȼ>Cob;A>ڦWقM9X~/!'MW.}Vrߔꔵ!5|iB(0-zF=}okڢE$^wW~nokY߮\6՜̌{i-AF*9)\t9IV6۸5ZUF6R$ŨQIq砳YUZ]eyv >hI櫥N )&l JulwE1GDOuFN2| }馥uC1rޫV+^gdb&W[4<^e4YW,d|htͮsUM)۸8:{3d{AѢ)~ \#J=NdƮꮓ90 |1K$v*?мS ]i$J,C,SG?/_՜pMSƯM|mG1V1$~K>CSvkuj=&) -,yLjuFHK{c駗.SOua;BrSqj-ۍZ#'Jys7[g2z/.u4+XV2VQ.ޕ)$"(%)#Z7suZ%j }BǬݕe)Jvz8zJf:hIN|svO1O#IEcۍjݽ:SdὮvu^@:o^5cs>i/VqmVm]ؔܢn6'vޑ̗J4Wn@OlKbX ;n:hgJ9ŻyǑz8f܌q&Y fN0N;[69 rbׅC2/#kE l&2~èMR.*%g=Ft.%؝e8<.e=Uv{~㻏"EˑnvDѭ͜Lu3u0:U֝$[M5<:oi+V4V9 6nXvx&_ q Qqw3W:uϔ2yb/(ɳ|5zQiJ#r|Hw#.W?4aDŲ\ugWG;Cw鐢K|xg)##=O.dF˟jMUvWĻsr.z]kPc9"]R)mkfOd*uYf١RsB Aîh=k]ʳUrrZsq`d#r$/Ը3o^&lRWȍyuW̦Y4QDUMJ65ƒ[+ygk XK_±k#y:8(TJOSQhJt2.DR}"5[) r)6V6u5k:eXZmv𭤔!푊Q[qQ}ҹLE- 8qIZG|UM4j}Mܕ[Vwm{} Naqµ"ԈM zOpKѰ?IAD3Ir0'/q1itoB5{%wkOBn-ۜduqIzYK60{+DʕܞqIt";r1mG/\/ym[6JƫR \L=S=OT@Ix[TMm{>ݾտ֒ݸӉLYIx>+"JVNzx||5rI?C{oz8۹e\R-^\A2F R+N9 vlT]"ۭ d)t֞i #E2jB@׵=#/N+!ĕhx}I!cM`ąZ*ŻɄҒ߮Y.Z}='/oۙ3IpW̮hT7cTSuz9>B}΄&h!>lӵn~j˅IvU.'v'CSZw8QK3G> ,J59ٷ+HSg䧎hJdzvwv-cvxS5[̊n~ؿ%ַX?O0\6ne 6kn9.ϯ} *h 8_QhLݣ7q +=XBҲ5?[[)+F`=4 }B,sNg==u*Nj9k_GJ)+R~GSPBȒZ:(K]heL=vKPӢwq(NrG^ثϣ?#tC?.ͼ[ۅo؞y#%ǛjVyLSw%T*s92JTM%"YkQО.q)gCͲn8cgi6j1MѾ[{9h^vƘǚםidfi.^RHmg&rׇz:}݃}xT$ضk'5s-狶,\vpbPD،=Okf.c#cdz2FK5T!&)|ntD<+OŹU i-G[EE*FDfeaf2QƤM\UG_{ǹm%\yrGy:.\4wjPGUJޕUV7Do\7Vy_13w;[?c]H\$IJ,*L]3b%L{y.JRKG2sq,B6T}(#nW|km+q5] r㪍bJ@y{byz,b踊3ϻJ,'^xd،)JVw#.Vټc''ÝպWtbRؒJz۠8!o9IۄS95E9ؔ-e9JR{dmnッ<[~n${~Њ$W?&ՐY_? #a.ߑv?oꋘ?&ơ|y^N4o=3t=~7!/M3>n8W홎2M`Qx+ z qy8%]7_~540ۦ彷]Wq CѡwkďyF5Dum_}~P(5.(X,K9vᯐ?leB9;Jhm#3{CxGE-S{;@Fz˙]=O'!ɿ]' r`:7'2bЖ>Iy,/eTy/V<.H?UYY{\^#ѣr9^7?xoRȆ7EoS_&??zϾM?(~Q-K&>"~aߨ t7Emsϛ+?;fCr)fY+>z$tIkjn_>vnrֳki-˹l= t;'EyC¥|/BLwBJdgjۛ$s S1|ɍV%JI6KvəhzIlBYɒ|0"Sy0F>eo5W)O+X˻u';v)2vVq۳kۮws?UʑBǴYO漪e2MIjPAک\b1)DDؚKm6ZWΨgȕ۶yjڳ 2ضN[C[|r@9Jfo<_eI7q.|cÊV߷:i.:$ȋ)1%%)ADZCEBxJ0MJۥy(bNsKM9k43IwNt.\%N簤I'.j|ƃ2$grBEٌ\}9:v*!n7M(ɽ]7c@XxƱԨ37īf62cTTfFK]9wntQHͮvٱI/f|j=7}\_V5U^+:uljSȃY(XI.ȱmo1甅jڎIZ2>#\*:gY|4k\8ZwSqtyA!+];бޞKծË¥e)#5ap.QK^8VdU{*ѽL\=qmjnB5>{ Ӟ`v±5 ^k&O~Oshɷ,;6nOW>u6{RqS`)S%jp\ipdEBLfTWy$GIYw~䲭J.1vSY5z.V>^+Ǎvc.I[R{QsNR3ӎfhd>y?UJ*}~[e\i5U^͛E]G_FS(Iɿ]i8:4zj~շsW,ˆsy:%O}iur]iF5~3M:Ӟ#N06)4ߧgdawIotiz:1r5YDZLHBSi;NQc44la=Y kQIT*ըl:tq2(է9VO4뒳܂~2rq'nrVZŦ[t7\oլfb/mlpc.I8콚q^1iE~䰳mi[dۧw֤ICfdFeCsg:i| 6擣׋* 96lust^{%99UNRvaMܽo ammi$em4D6DD\nA%$$#}۷/ݕr99JMն[oT޲E"KTaP+HGkŴj5TM5xƱOS-k`ۛkٝWz;{kS}F;~q|~^_|euwnE'pSupUP)V]vE+t =ZRaVdG6= *.ϼnj9:UɷbېmF_tޫgHjVS'śǕًdkkѻ_]Kv?nT>)^e=Ar1'3ԔILyD?:-^in):{7.؂\.:V }#뺾.3r̸*xbFM aȵz 6SQ:ײj[ 8nn iFMw rR"5M5I旘35f^j='j:nNW.ʭocZvZKV^ɚJ.cM1ZI7E'6rg탸5oZ=[m Z`\hbMUR١Ȗĉ):Jin!_7Dй+f̷eKҷvͨBPR(V`y6tw*MRΝcB.ڭTnc;P$8nFvm4(D(R#R-L -2:FP lxZKQc6I("Km%$E, 78uXIFA$RQI$JbInG]c[ֹ:ZM+n^')JmJMJRu{e)7jQDw~%yQl}BZujSSf۩QZ+Dzhd5o%BIc'GZ?}΍:>Ɵivז-%݌J5MqGWTVʦh݇ܟ~Օ_6 n'{3~mϬj'J11OȻn߃r Qr\3y٘+WӍ'WxEs^O3 o~[|7>]]H9݇ZomT@]?5B:Z߂'`V_+/MSKX߆ޠk3?o7y:4R/7þ] iG߬aBRU&?r&/} cQߥGj2?C5Yśe7hU=?+ x龳f-܈czW^7p%-(\D4h{UK&ӡn^m]Fݢ:`δvj俜F+) y[{{ 7 tu>gvrěOj'5 iRg[ͶFjGe n~qT$ci ۚ0oԹc*jL[sVWqj\ݻ&6"WoK:cnWmrv)o>66(F>=W^bf#c zzʞtپy%mՉPël e}J.\Zk4ttt>oEM=q)hJjI=ͥ(%]脼_88ф;͛gWG;Cw~˘$4=uWdĜTثNDkiQL9U*O"4XP`02,Ge-k5$h>ܼ]3vr6!9RQPIVSnM(ۓ{>;/Qͱv{3&-[rc)ܚI$n{Sv3[j00)-D3z}MRzVQпj,T[uVs0\}Sid;r(ݝJ>æʺL&c[jPK0~d(FKÝW\m]GTcF|Iׁ)I3~#oX%vҦEݑؼ5Żv2qAZTE^..M{ʐfȏ2##.R}*KʛZz^ӞN*lPťLf\G6[WVQquV]XAi)5J!,$iJ6o$tPZc;Kjx_n3`qIelV~vLy{fn匋Ѿn%;zV.n'-ұdd2߽1bZksPe3TI9)$ԩIN9Vơ\=2885N\ p)/a柛w9g_lױo8ݷ iixJV& ғRi{N^_oAŮE6Y7I$Nk$|Q)-*4Z)^¸%4Qm [I%.c-OV+C֧R#%ѨCe3i;w$G+_dy| Fzj$DI(=OA gj%v/]8qԯNIS*֩',Q%\44ZZ%D|Ǧʴ6&vֵI$%8(ԬƾS&#Z. }6z?b/|Jl{ץv&mpx4Z$”ڝ4-H%dGKfM:sKSRWeJAn]>s6应-W9'H]'uȫYvgK^\czp|My\鏩w/ËQ.)]\QiS`8uL뚛̸=J"ܻi\å'-)54Ue]:K\퓡vK xwBqrH\*֕TnzC.mT=t-H]SČ~Nu╏NÅ3f|͡G~B+Xm[Q7U{9"~jgK Zoʰ7"qJ,ekSeNGgϳ] ^.6:s}_,%eRg<5⿨z{ZPun#jRІ.6g T.!]xa c#jN$Zpl̋H WZu8WmMRýsĮ?Mco~sx TU҆Q :KDG4n42.<3/'^?6/ܠڒ^yrrÿr2\D}}B]^E~^T cɛ7϶Y[<֞[7d}2%QPqOLEQR\CIsj1?\}%tJ0e~ *sk"*)&ۓEi#{1J8Hrt|'ܝRr8)=ƔN'RVz:cf]F7bZyZUȘ4x8,#JG̒?.W9XnO]KO]%]ƻ O5Γ/3qÓj؍/r̺rƵ 5\&m6h.xoeX[=<3%< lZ"2h\Z[&jW3ejm?k&[]ųj+{N{66leu_+lj]q* 7g*knأYv= q ەdxЬZ|%GUrQ3jLŒqET]1% qkXYūYc[7Ś]QY\jko\</Lc7+'hMSUc6qXyؙ~6#ѯv.0$BQi5YyIhɍiy=KD!n3Vm[V%W-B%swa97ajۗ m+9~]fKq|Ddaˑ0A]_v޺mM5* F-BYHJ5}q>ʉ.6hyDmpD׬'-_v5;5[8K[viJ.3dR:oYHHh9I7:۽fi+wm^ [)odPѱ52CZUJicSw\&_s0uBȍh32džzQflcd^m|7GѹE!fO5]]H9݇ZomT@]?5B:Z߂'`V_+/MSKX߆ޠk3?o7y:4R/7þ] iG߬aBRU&?r&/} cQߥGj2?C5Yśe7hU=?+ x龳f-܈czW^7p%5|Y:SJE\U-(a_cƣUǽXXKiȞNlmۊڭڄR!**ܤMeȽ$|X5(Ź\rJ~ܮ]>'HB0cp XFr_c?f?7<ukSgov¥iG>>䙗i.+t+bOjIܶ . i^:nm}s}(3>NZ$2Qg([".>i.ƾ)B̋M8+"- >eE6DݥJnJˣt׻ 5.˅nJGwZD~!i۶a,Db3ZQ3O#KO5/֍ozuK'GbRi᝘NV_ҝcvם ZoX}F6z 7e5_e:ۓj=AB+iܔERadMBq*ԯ DwI/Gy*mĥiRKg6skY/#SN4e$-yXM YL?^ĸNNӪ{$r1JJRSLO]Aqm>V/s[~i/j+m>z}eI"Qvp]{ZԼ:{vPAG2=T͡@ڐ#u"E*>C;o$~C#_d/HBq^YRٽzIKbOm\~żjFFGdiQ(*/i*#.FF]©m=BmpQQQSP&Ҫ!T&^>:y)$ˑÐFčI Bӡ-t!bM WҦŶ'UZ=}zvn~oT/\ǒ'nr8 AJIӆz<^uߖ4eFC1i+v!3qNyߕni?4JZlmYFXFۼO0B\m[ tʄU3s"Sr(NJ;SKW72L4̏BVdf^Ҹj\]ȱ۪(ӷm?J-KEmWڽ^4<8qu%9pŹW~877ܾeVгS(յe^C]yX͹! םm4FGȋ\y'Z FX7e)|Gjt߹#gb\ŧq_([R8[qU$Z (ʻezV2V!iQ,i$JE˂٩ a(GK'O{vnBvryRd-RK4=qxZJMl_CuuIz @Rt㮽޳!|68\-l[џ84-2Pu" RJ_^OL>G1~XnBŬw6J0*Uvlږ1N G1q9IUm*'oWu][&UyYZbBZRZNfEJf"+2nF~Eû7n1xv.RUM$6 lAxSQJ&n5ܞwlEói"#>4׿Q.nEq7Oko[1wg8ZQwZYiqtm&~">Bo?w͡ni2峋NCEy Ҕ+%ZJ ʩq*fpˤl,~^Mχk1+:ݕ z&Y`KLӪУDr3[*Z :(SL&ݻ۬Vqsyԭs x|iI߽zZrg.:mp%6ԜvgmpIUt;QbS.Է) ǨKSV,*lڌ|5Jt3#NP.=+OZ~/G سIgbꥹJnl_DUM\iM!֔wVZuԺ,yV.Q>f v:݇WiaŸN5Ҕ[M7SsrvǣrMW= \8ZW-jsnڕ.ZnF2qt ً[ٻޘY۷Zm"Jxr&NAfA-݌to9s359݆mZ+N1-qS$D=17 x׵+%_ ve4ir6Z$FDڗnFtOr'7'{9C˨ꤡaYoace{Refnft RR"4%ʌm:Sj3)OdInTO>X'vxV#jܮw9Fog;5.~Y5\~18YQܹvj4+~t7S ﬕs %^۵ڴDZV69R^Y+rj$ԇoJKR5wB9C>Y:l+EǎS{ʲ{T6Wi* ^^9k/y/Cs\g*qڵgn4T8mERr|Ti+iPe;;.i\EBEJ 丬i9ɧM-ԼsGDrZ>r#R>~X9y4b棇9JwV۔%m(b[Tjvl}۩~nDԺ{Zo-YuK1vx.nWuO+jN [ٮ0%"΢CdTJK-RަH"$I(*ve &҉FzB,_Vpqp9m8werv')E;o&QE׵^d9˦j\_,ڵugZȻ̧8k+jK{wmr@3ӭ2 wFkzFVqs1؛.v'I%$[iT]D5Dl2 nk7qUxԫLS+sا3/ΖeZYK<["%-g/kRs:f3;*E ت wJ%)5&+&rw*霣i|sMҴ|;R+fm䡩.!**dӶ-6s6,]zAXMWjmnz%SJߴm2UXw7MQ%<!tKys#P,W>s;3IYwx<+i_\\\U6 u7P|xbn_k&ӓVOe䦒 VUr,-㘘"-LZeOSҠթrEvq8Kf%5%&K"#%vD/.ZYYŏ+p$nZkvއuW9㓱Z G wYIFyf)?ƎUm5ԉ/'k84{KO:rQI}XRuԪ|*lu)3qZ[mSm5R3".Xcَ5c®ࢫI*۳~wRϿQWޝ(EJrri&ۥ^ʶ齲Im|[yb;mnm֩uiܘq>E+Ikx߄3r33-5𹻖09ϖ9[Tz~mr5NsWl$oPusޛ^{Z;);sڹf\3oٹZmԉ/'k84{NO:rQIBø8Bݱ3n֤DiK4u& ofSȒܩx<˘|N0Fչ]qsp"}! QWw@t4ӭ+cO5%]'*{eM߲DRO1y*q8w++e!c߶ܪlZWّM欼 CQ̼빶lX{vib/V/ ai;x6~]+z]MWB>re-:lgk}պ!#9?%܋V-c[z!W?c7YNm/jRr[HOzԻefճ0q15Zp#rkQQ0tU-AmڵP/cȕ?0cZYj;:0ZM=D6g ?'UN+ձ[K ܖB2'xq9{|۫N0ku 7xaj;n\ 2[VznMlWiKbSk))f..)Km)&bGZ=>OR܍W:j'rM'wYz&/鶧{Sʵb"vջq[I-ՌZH._x*BagC'T(Q:$ͳQcMCKy?3g'ߝqnT);qs #ؤZ}OOI:cfnc8W~qy.;^pVl]Hԓ>^H^@7-AA܃nmL(uWܻS߿ Td95Bdh4t6*dDh!EhI[iŨ\L.&Nc ܮf^;$R)\rip9I|ٺ?#R.ZDZ;/]nݻqs\QE9M&Bd ]N mN*D>tgbK>+ˏ.!23]BȔR1ɝ^j'k2ƮqBQq[$di]icV/e`޵B.FIIJqbi>Ӥ|p; 6${)RU>_e}^dzdfzi %ekRVUS?6'hׂ)5.\+qUgzE2C˷ecŏ^֔ibk shesFWJ#~> Wk~ݨ}ڶ>ơǚ)׽ZƉo~B-ڼrvoE:Ʃ3ۣK7+Y`WirS):{>ڛ}:wԨ(J_";6R%[u&ƫdZ_\'np| RJwNeTW,=rrbnkڄ[M3ܴz)3- R.?:okۼ0TU'w{6&w7j1z3ON'fGoO?)S_bQ_¿R(^ԴԴG.EtMڇ&RUiW uQjU> Kiu1d<ѥIQ'RQ1:O/lŗᏩiʂv&Jc{D5 Tt)1.n[n۶X}RjqnOʽ(~[Ns{ސ⛌uO,kgo֢dRNQȄ .'6W!׌P朼tdZjFGE"]K@'i۪N;sI[{SOzk>`rRR+!σj8&TjlvA̷Q?HyjyLHNտJMjܶT۽lG?SnKN%<‘ nq[N0Sq[Ta(&t(|HGO~gvkݻTR4&Z$#ViOY1r$6YF?e4U/Mvxų:zbU^gQQ+NW_'4jfz^c'#`rvrڡ(IJ/J ݦ6 ]-CW |_{v*_q3^DZ}Ic6Uڌ8p7{crZq5ki`)mU6|-Z5^iEz3P=:Cu7DF'k%}<C-޹ֲ̱#\,(f88%X-N(ck0VLR~} G"-8ӏ/ϰKq?(#nrVTmZ;zióM4 m |UT'C^_1X.gXM{%ʤd 4\ovN":"y-,T)fLQgۢr=/CƹǨJVr[a+!rT|%Y\ٱzsS>jͱ.oOc6f$q% ǒGo;n[];ߎjrk{~\VۓNIGn:iqxo |~t5)Rxעri{Vi&NUOl_ѮMfsޕkЄay.0P{7N((BaIP$ K"U6Gl ݙqJRu+qN$ m#*p<|{:>-Ev=86N*MM긭U*uѾ?/^o7;'u,h4݌xښRM:5.(/ \իU.{F^rmF-Jɷ.>Q"[4xT^OZ~mK}T0ݛ^SAo9u?lX(' qj%=X}"^e4wˠ|rܫ 6I\Ķ;Ӻw!'ڍWg{ i U_9Avhۣƾ+:vs/MK[ɭīe{`Zgb}r[i'GE2J7Nez579wRq+Un ]J.cJ4M:h箽Wxxm^ pc\wcN%'My $$| :$Fqɏ¾^қP9J6Wxvu}ݵP>Z'FFdg"-; [¢cmWkÎT8nG%ݣ7*\խCLRYZͤiD&J#'ehbSyXK|y*ӞpS̍R`[pTr/Eg)K+92{_ n3zwz'oŸۤ+sOj J:`T>Cf*lwd\fYOP"R E֢̔L4ɥ :;.b(B02rJ蠟9>V'9M%)IqnhP<%,r'P/vNSwr#w"ݨaqc(|{kd=^0jTMR2ULNz|.<|^PfY22##!,K~E BEJۜ&jRNsHަޛg\r,v؜.jK3)[EJ2ii{KEiHP^&]Gn8x=K}Wx/KI9-ϵwQ%spܾ[^R}S3$qvq8M[ ozKxcqmJ/ӿ{_}7&ݨ\f6ZSyQz& 7ۉ[8~UNn|nkiTB+4RI8'Nc%tn{!]Ȋo.nEmʱn𵵥J A+wy#+ikǒڂ;՛s85'KmE:Ђu""Iģ5p=БbTY-ͽڔ詻ngL2Q}$de# fs^o{DUUsfwӶ;s1T,ǤtޒQ\෼J=.tKU,7čJ5 N$y3kdSMQU~mO[03 $zAڟsF5^뜞"Կ QHmrR"ӳηer+ҔZ]hE-6Jmt'ޒ=O[sQj)6K}?e4v_KfZheޓ=BV[bY}lݒTTЬ{ȫvO_qpRApVŗ 6ju=*BR)g "O1yhb=tqJ gtm\b3RY+JQ^Ō֍\յ\>+uSi{=x ^w;uӘ#ĸzLn*$anok߷CBӷ}5Yqvdž<( "_OWit5:EZj2 B ρ1̊fi[n!HQF82q1牙nqnEpT(2RMoM4ϳOu ':֧_Xjsg jP^(ڙ{2%E͖j^}ZU[Q$'U) <܂%!s"m R'G5M0<+zM6qYm$ڕ$3ǧH]?o2N<8F1̻r_my[Rf59NjpzBnl7*{.QP 3N&^BLJPjAHCK2Q}$#~YMq8 k(MFMU)8MEqTy+Tʞ-ar5yܕOXw!e;q-Jqܶ䓊Y:LC UE{/t>r"lI9)3KJjϤA 6SEE$d߇3KG*En|P\ԭTn6I-ƍKTj<1H_zwGr19wF N8ݝ+a9ɫM6mhePi%mmD! """"""*1bRKrD"vnrM۫mmĽm]ӡiG~e"˩ lhRTMk^MX["Jݱk7_ޕ*DqĒ&flՒ}`W}~SմZ{ĕ~wm*/{{ѹ_-0ط#P]xlڱ~Tn5wi*lڪ (JxioϏbqKYR|!|KN53 OS222$jzww%i}>N)E+rۥ7c$Ofl/LNث\6H9: FY󡈾I)fB֔JI_ ֣^: 9mY{66㒢7Uj]:.-os[R&gMF3˸#໹kmjq^8W"PΦURjʄWa˧T!͋ lW48JB2ko+ /Nw QwQzQ ے%$ޓ7^YL|r7!v%Trܥ &|M8~ybrn[RV gSn{{*#2#ԽᢏӴHak" ӌcwҜw&RJ07ױ>Ļ =^ BɆ)v32.M1=#6%̠tҤnzqMwԣ~s*%-j|_m*.Yx9Sz=)qE4 3pk+,`=kNRڥ=B=nŔNAx)Q$ԩȧ4z3t#Z2lҮYn$S%y- JzGpu|LBV7ZW#;Wwipܷ%(6jFG5#{$D"uۭ~]֫SrD܃fҎӾ+Tu>-ZTQ& N|$沸ii>eRWݳu'[O̻j8JۻEѩ[]vni= ڒ,[_%kC7I3Nv$4ɎЈeٸoUu:[}Do5|zNq=Tre%ɧ6&~DȍF]ƞG5q m]/w/ \ʲr8=oʔe9U(W"|S]uZd#?Se[W"ֿh][-7Nu:T=)R}.;ml*5Dlf $fF(̏T hiIUU4Szɕ t(%_|2 ~6eM;TƗK[f&]LK^CE2[ȏBOd;Mi|cx,^6;sیGpQ\NuJIFTJ~đArh* B"$H쉩eXPRj?sl"ԥ)su]xpԴY%VESH"ЋJǰ K&5^Ukzׄ8kEgS2h&Se\ Yl]WҶp-ZUvi7QS:4byqOo+[̺腋[6-_Fo.6[7$p&^ _GZԸߍkc.qqoI[9m߸YxOZЦ1uoiSH)P9Uʄjcq= S>֙NeR><;+ڌk%_qT].srNO?s[=vH[]RZHRMtᩗVؾ:/~u)ԍdg%=edVrISb{6vSu=(ܥ)mTv/J}̇8 S3ad:^hBSf؉OɔLhI_1d8,L><_A0y3rXq"'(۱;mFNII.v5_(^q~X>y{3צ I*Vܛv/jW' T'NR'j%ꔩ:mJ3SB}΋!-H-RJBТQoedi9tjENenPpke.%4]#{:>mkEɱdYWl\\\'nRM4&U>?Ќˉk÷!𴪛]]5}UqG~ݏI"O~s6(Ļ)qO~h}uԕd}Q~G,oE!&G&/]_H-O=o{k\̭bkv.Ô܈+;arZx)m?M\3lU$mk-CFXjTv6u' g:Vn_*qk:VC A%'4JV%EY)#BғO4<e׿jQQ]yUr4=wm[K1r׵%Iũ-O}|kC;/VcݩWZ)EHdžTru]8hgĵ-;=>U_ InvTm_jBM+QiF"9*{DI/iuo(=TzϖmPQl_v4z>T*ȴ>YF;ε\t]EH4ꌇ[VrLzef 2T^V>g2~kg5~Nק;{~Z~W}&ŒBӿS2$J?~(Yœ"˲ߩ\O]: J׉ښT{mmIѩn3˧)4LdFZ/zUG>U> n 5& ϴ-KJi2o]uKljvK3$bԔҚV旧iY5.ίfi96v7!v))FJM4{jG~Jt/lUE%pTAFe4qQk\ve۽/u/Im+W')v{\-E|Pms7߮DZRr۞/mu*1ՙaB܆ -xg3#6ۥtRogʌU)׎]ZҞNnŞr}F1Nnޞ;cZ{N}ۿMiuxʉ*3qi'9KHQ$WJxXyرŔe~[v5~/jN9Q4o6rJv FrdxM*iRjMzUinHdн7ᾞS=S'7 } ̽zt7K|_g J=Lq+/Bw_\ۧx\HJUPzQ<hqF[V0x==CsU7q|^ {)Iq38$_A(VgcKu06Ƅ"%i~_ˉk QCܣB8Ku/񋇵u([w}$F|8TՠI.E !;RJ^}MɒD_q2];Ɖ{5}*n7nEInO{Mwv}&q+v [V}Ĝ@%>#dXQ$f;iep.GquixVt x6bj͵mlKقQ[T]zs/&yەnM'W}!Fp_d^Tu N{ɻ'l{խ2.sTu{W^H&;1s)Pӛ6>$mě;Łnj= fLT)>׸+qReɴ[UR\L*P/!$Ӊ3Q 'K=m~6XqW3^W+ųO_[F$rR*u"T%@O +%# ]˽!aܽz{ͷvQh쩎]hGތ5ɇ*DzJDRNLi 4:{~2FmXY-zzĽ^f=]uū{/+&c:Ma{ĝDp2m܍kHș/(--m_vݮK(V{R}.k&yƴ7i^4@3f sK3^Ř˸B=]?gt5KbZB<e;kQLpxuWC}n 5ҴepB##~q= `x]KWF {GfŲ}?G.I9pjWkU]>={7q{kO/^I3==f1ɏ%nnʫ/Zu_yXN<57ۍ'vy/"8넭M2eԷ&Y,в33%IkjMr7xf nmQkX4踼>a-GcIeތw&U=-:qnW)z¥j :WqSZvԒ#j"KrIU)%qrmRoDGQ~SYRsu*V)  ,/x)MFD6O#]z 96[Ui(JRfw'y$GeUީkdMF-ݻ98F2d[o{Rn0n-xsV6Dh|Eb2E:KCOӪv4SJCr"J!!m,hRLD| ZYFm/X~ΧfrN&4Ƒ=Z9Mh.Mܵw/BdrܥniŪ8ɧ|y%œ[M=_tj?F!z5\evM:\ ~F-sg钬OWq“iiȍ<Gi%%n2rqͻllƑ)okw7}\Uk-:&fj솘XerV9yZuʼşdFC=rmo%~ZN78X(N)_7.Εn1MpJ}62jjJdI";R5&iLԸc:jmqiQj$ujp\{;v5B񥍪Xn Ą4qOERjzN(Ga٠䌡)p*v(J7#ZۻZ8O W uONb+^Qipv9GvֽƼϯrYƖKGJQDNPhRJjᡧC"21"9ѓS1;R_O7/WGz)8fE%F2ukmvSov/iZ&/]~KmI[:^~ͤ\kMi稜\ywJt3W7 8Ʒ~ݥeFgѼw"8VVSج\뻆}ݭ/J6Q)d|)zU3>k\L=;ow֯gN3pKѫ|wmkZ$z^2R:E)f>ς нd|#׆?\ǔpV{;\$ƵE%-ͪm0S6[n< kE[}mvE4DDZ^$OZ0*$~XUv҅B@^?]so#%ojw;Y#SxxueBگy v^i-)s)zV jC{7Gt.w3v,ygg8s]aE_,*E tY5k٨h=o"m泏:\6w噓aiL׎n^c\75AGkЯ0Lf46َ`egZ˓p/k;̛]kq!ݸzpԭG"}R9Ve>ˏHUjJ-&7nrnwG*Xv\˱/vN}O)ʼn&CV͍f̵]r\PMB-6Du-#RͰtRN^)mT _}nSȕC*_xBuTkJW[`ɩ`ejvsngP ڻ.-WUtܑqԹQj)t;vN&RNũT+8%IXӃ5fK՛-d9 ]CƑm|nZ-6=Hz,*aEm W3VzRšdY~Xf׀Xx"]s;)5u*ُHB BRGS6bݶؿ 9j[1*jױga7oX CUI%0v#~\-O-Ꙛuɷ쏪&5mY٦M`LJ2qK~HZbr =N'YobI. (^ ׾{_ ?OJ`S`3BN[}5w6:ǵ/iSlt=4F*d&T4y/#. ɵim5Uֲf 眕6Y7 fơ=3dϕq뚩$qTM-%r!$@A? ޾V0c~{[{;򥧅a~ڵ»&ڄv1ek=wb MLkNAԬw-x>~/r=e73VeVN)K%Sښe"+3uXuچrn ֺVzscJ峻m}vb㶓n\YbIUBT%*,0nov=;z꣓S/nSXSpl##k9mXGrZv^Gde!ŷRԠzQyjC]`gToPov{j~KRBMY}i[߶9KL2ԉO0K#m>wB[ٍ+n[[b٦DX ݲpo] [\m5qdT()mo4Oy9Ie b][wղmM~vmi۱~t \}$яimRk(L c Cvk7r9_r1 ;zv|F@KyZ[&jEji/"6$69ml#e]9s\{ScL}Ȣؿ0q/nZ*t,CLoD߉Njǚy=Pgmu6^]l-["çUʖMlʍp-"qmU>۷uFOJ%Ǔkx 'g=睋k[3u,{³WɘݪF]ՍeFX"Oy\,cچ=w/gn Ļ]#2? vqy-gXnR.^}ݺFs{ŝG]}e|#0mjx"ƬWكm?rgU^xVB":Dt>@LRbun~ݭ,w+v⪕;\U(RYa61>#Jm˞Μ9g9XKaG='u8gf}'qy#ɉw J]We.ʲ-<+&q%s?2dњztҼn`cΤmmqMdz O[-ߩӲ&;[tmܝVnr">{x<8U+p:Ig]zjGkt,uzf}dؠoJaکqEq -(:d<պ=eKy[˗^%ZXkX[C2߱\ITTLGzANM￵i]K>UsOGDDD.ZF6* ҃V Zhz{'xp^`wo8r0h ZmJ5"jb[l=yUu7-;7IT%:jFjߖm0tzU'K)څNۧYJ)4IQ}^KWm7kSP>q;ނ#)'n7&׊r?óM{IwR\j2Qn[v pe#/tAF\ϵ225q֒om6z})6҅*oqDsMf CNIN=T S2t,_ѧ}kveMF0J\Rnnݙܹy[rUc-j{yGtkQ%s]5qB.Nw.JN1LvR Ui5J ZESQԙr):MJ+g}χ!2;q([jAud][ljVK3$ײSJI=/|&tl'*n۽f.frܥ jQO8>&Z];.|7T/C}$ڋUmP2Reҭ8hFF\L 3~e v\۫]ݝNmrnB%*]Z«hKc=BTLG :V74$=Ǘy+EX'4tn(I:Ѝ;Df8c,k1%dJ6.j6ź{N~l6&*fœI7 WAlGOu-ҢH,,(ǔe뿋쩨kM܍ZſgRvQ' 9)?n|er˭|I|-fGK.rΛp8XV1%K6mvG+tc+qE&ǸC_Nm:l=_/m5^[dߌڇ.c<%:)tQ$Ow~-aY;UJ>=F)2[nk؆?훐M=l6[4(O.]2#-H^n#->&mp5~Fӛ+|| S,xag%qkEUzUgæBhߕP(7]kFnq?֖CpruZ6*rEڊtS|*tI*E}7R<,nUU֫^I7Q*mSly%rdȓd8hE<9oHhMfNSRj[i7D[Rj݊+kდq{"$$H?p\̅S?㭻;t~R߁)^/>Qj`yt[w ԛ;²~+ߔ_ YW~|o]?x^ᯛ `ʼn;g)T@vWn]>&4lp+$D̢1l|ȨF%-}.9[}w~ ԠLM9hСablfe&QoW!s?wjLK?s7yO>(=C~_nyǜu?v3vyo oI@qV-jeES^[9WoSܝh"l2C1a͔CiJ@3:Pճw=/7ovuk+\V;lDgն<[A+rX~d;m!_s8ݖ׷;;.0llUC+?i#_crʙ1~C.\–q ul8Hܶ2m`ܻM3Tov|Bs rɵ"oLS- DКw=Tv@f'6|YlD͓Y%׵-#Ѯo%:&!3o%\J<02;K87>^vgƓ# ;ݝmz^Y6=PS39U%~ &f# }o!muH;ʲŇ˷yvP+&.7e[3'vR4Yj̗IZ`e˽3o[WU{ m[sUbۋZǾۆl6~9'V*.\S2<Sd*zY[aŶ`]C$n.v^Ʌ dng>ەZ,Mmϑ :n6nϦezWqUJ4! ۇ4R! =>>Fn|Q[{pRO17ƕ~._I''00k=b՛o}Osðc2'o\3}ݭQ^2 . R1yKȣtAݿ-uܾw!`?1Whn|gzUo[ECWwjUIן)^h#1ɭ!/Z np;o;ΗŻkXs."6E`Z1 עӐ9Kl8qd q} 2Stt;#j>;խabONŗ=fwP1j)l6J̶|gV2`y/0E˛6+ԫ1? 6}KW c\KoKͨ2ۅFw–s*TԞLיuDx .kCzWXhy۶gLu|%TnupǺl-S* PRaLnT+c+*xl.v!.U=|; !_L̎뱚U=4hm:ٯ"y)$:>%(n}X'p[ȴ ^˒4kƓmzDx \ 'NqamP7nyN݅=j7%McSڵj%STy qXymvCg{w/w=wSW5r̹u erծˊsOm=DhEҚRb#n)QOxtվQwe]I}wCa'"[ۂ-z}2UuKP$㜉ԧ:mc<Ý>RoL?wu|%ҷ&K y_!y9 ??:tq3(UU-lkS'ɸ@jdzQˬR] EVPW1DJq2n:,c|ǻ̑;y{X,ۂ.u.b˕u.tKBjQ"[S園S`ٮdNبeJ&9Ơ ~0a(Vm٘L+Jr*vڑE( x0+tp˕ n';wm-ޜMOxX>{#2%jgb2M[`K*\5@8l'e=0u+w ֘鳾{y܀:R*Ya]"Ӧ%ktynlۣ65,3gU}{GYrb;ge'TKwǘ.,rpܚV]Tr,!dp /ԺU,xՉ>s׽~W5oTh yx?xrrx?)?ilbT׬,z$Ԏ.UH٠\U1pU:]JwSrGZq8àd驐,N67QYBӢD㏙W!Q25ϸo9ms-7-%3CihO.J鯽-;MZM8ku-7k9S$8]q2E(}bۏI[DKOK}3KUB^u %Y,u.-&f#]'܆o$x`Yu,dzwM;#oKxn;\[d7}Rb+*Y䛂ZuBӱl{j0O̓}LhK;[aֶaGL{Cb#S.T[>߃F]NK"u^LUʐ_ykW?!GRj29͖qa'0[npcDvV)qz9R)PۨM^aJx W] r>];eN3vxdmĘ(5W2K1䪖weF{mE/QP6\u54x5[hۮ-Nk”i[lUgL]J}5 S:EhiUrgHl!ŒJ$pe=q^b͵Q' ?6|R\,JA ڵ"TDꈭ:ymg`B5t%M] <N_zv2_Ortٵ/i/ReӮ*7[qүqEG* m"[I:6e^p"I$jԴęh!m)]GZkcjS!{e^z}+Cѥ9;R|/ֱeiUԏCNu2Zhcٗg$ݭwvr P8*7/Lk~I'Km1+MW%Bk|oOm>-#qj*|Dbѱkn|n{v#jĮqNpMIUm(7Liz;{ҜݞڝVƚVϬ+sO!OstGvxӉ']uӎ4g_ 1^-8ۦ k!)Ύ5O;YSB#2Zzχ;<.ֵOtge~.(RC#wFZeGZٸ6FFJ4e2ˇpJT$[wgV)q6muDGJ56q\I!̗ y/I~RtJ9kJ]Iy*'FN0s.[l!fw'y(7$œ WƫgyΙdMEU JQJv̋vmrۖ.jWR_M֨djYgSj0^\y'EoECjm$ IƩK>Z28J2TiJ2N#}.s cArl嫶nB.FIJ.)۔\ZiM>/hLĸ=C1s[?YMqp|94- 鮝𦔽/k^#NT(Y LS$6˩}{;5 )B۷W$qpN)qqoot}ZDVә;7TiK|6f3h$dԄ}fqݡ>Nb򗉉+ͶO]>ߡ_VtYf79ڰիF sq~prս|QM)g%l0ocJȨHz V;Bb/kLAcfPJ,ԭ{ƍgpjNR6VSI*$!yV足jᇑ.](EܣqM\qJ2eZT).<9UB/(B0j)mtKEj#׿fDI-=rZړj|'Nڤ]k*i$5qt"ݙPM6E4ke^Z8ۏhz$Q(R Ay2zfRñnpnkbkI:=j &ΝșW?׵d{+ύM'??XqeeĽ.[o=UxFS=ӷdZwenՄ]_X=ĭVa* pKs0ބۍfJ3 gz̚i|wnxtjc¼5${(1fXQ65ȼb̶Zkn>%FQMJXӡ{TZEVNᖣimT/37cNJUPnP҂ZOE~"-Rc4^b- FEͧtf5[)S!OZIښݲ͑;tvܡ+N)AR=hCNn;wL16-:特7M$=Tҕ-.R[HٷnXk sn[ҞD-0WS9p9:-Ϸ-jѬNu{ҹfv)[Ľvwfg(ٷfe+0mYj8Q1\ݧg]Eǎvڿc!4#j5̋C2"}BRriFp7=ô\TZ:\BLfj#I22װ<;صZl j 6:l"6]۸ K'6RTѯ^ئOԓV\?$x7s#r:Oh{ց=MmuHԷd{pN /܅:UE#Yy+(SgQ(Щ)RHzw>^Ѿݻ>mK&^ '$Jۻ&w%F|xfz%˳ L~3N?Cy9 v w/{ƿ kz3x> sXv}vP"@WyC z`'톽Dw%-tt yVY\wmuPYQA0iG-2JP,6/gˢ]u.-n!Zw.N7Q]Df}Q0({a\@=i_X7gFǘ8^⻲}G MZ1)WEfO12G+=-B@z\`||w6ċj߬m}UwRox֢I &c~XGP6Qndpvܻul'V7^FJt^{b^B(L~sѣ6@߿^xqU!ڙ5|Vpvef-uӥ^3  FSDɯKD%0r}FF穛r7 +o"V8tv̖NQU!5uFd"bCr^bJ=֤fM#ʳԷP0O-9xRBm\=`r-:;~3Tl(nXtXi%2Vٛ#vwqƴ`L@"H‹qW.j,JM5B[)WܺUeZFqc'V˷1W7V̾-MHФwn8N;HPSdݷC7&2j.W\τGŎ'Vb]c.x+Rx1%C2T{myg[qU|+m:M:շ8҉yWd)ՋWS%%:iqlʹmGwݹ WnNŤѩ5(9hTٵDdGUi-)vSs2 2{OnT$Xck n:¶(lASLeȔBjμPpTb2~N2~%^k[ܗ[Jzs0ӓHBKq[}JَA-$dFQgjxxFv4r/x*Rm% `4J(&iv7SkԲmSH1YWmx 8n.k']:Z˭_W >ڃXЩ. jTq%Aā[E}amc]D:rmHRiu:uӚӢ\p(5-q%e)(۬ҖȽIf<߽pr&ݫVfY91q2ĭEQgYbTGQ&,yL+N$[q*RVۉQ=FuTܻ>f>f㋳8N6$܌n)9&»iˤsX,݅܍ȩv+sRTpO}d?Wn/Inpȸ%O]StQO|v5\}7Zwb.AIVK^:wb{[uݯcytO߶S<{8KSRׁH̏N7ۚ[xkwYy_'ZӵF+>쌛ZUĦreE9F[24De{}@:ExWs-\ǻ7K-\JNvEk%:s˙#κ].oͳ;լ7wB6nwu:$L; DkI#Wz.:Xp(˅v$Sq,wn\qIN-e<5Oe+vuYTpcojUI_ާP8 O 7&VL8z$_B-H-[uh]T{|8=qVRN-:Ij:7PUtXϷmy鉿:RIM~33ӸS2#׳GdŲ5+/Bx{(WzȨ5Y㞎#|˖+ ط.|e<o/rߔX>7s}VE.OVti׽ .5nNJO"95{#q}Ay9do]R"M6z\tnNS-D!@3N_jicWsy*5uٮRcWv/.,j}=S)j5C^> Ie =gu9ӛqjtz]۪TMoߧI!Ǧ¶m:,"[L!{qAv-o 3{"KʼnrIkfٶj2ƙ؄S`7` k6jzޞ?e5G&6uʷ2%ԒRKE*G\Npom F/V |C0.q_eenƣ<5Oh'67ɪn[SĽ{ڔjǘzs;~׌(ۂ`ܢ1ƣ` _l9Va6%UQWh~P~\F^ZHR@:ۧCJ{ôGeBh;~ۧnU J\O+n2 RҠ)ng}Kh{5+S×ܛ.1ZjG)iRȤIN 4%{oΜ/eO[Nffd ĹK?nnԼMqX'܌nZvq<ķbFnͪaQ`5 s,M_լ?-@_{w{ӺձJ}GF[%v\5[ŒGkOw/ΜM9rjË%2+rd~+󲕛C9U۳r[aJǭm|˒LAʨSCq[XMۺoubfp:t+ΤĻo ][ zt-*67kvS7D·MMCQXm;)܎n_h%]4ܙnRk!]ڵsDUF"`R, &#R_*[z*ZqFXɻ]7|۵w+'pFDەs=r./ᐚm3Hשy yD"jHCr':sA65نѮ^o1V/ f;nFr3VM)e*- s D'H݅fӧ\*޷[k<7u<-]֍Q8R h|p=WlW3s%Q %3l}@U-K6f-NϿu|ڴmWN׮[׸F*mW\%r! C78:޳vBG7ŵ.JթԚ2x)ST!řn~9 W:Wpܢ件{xf8ٳwKE ҰWxVB\qBZ 2wMb[lGSnyԚ~z9ZmያvoN2Afnݽjf>)j3 !;gOYʹK" Wftڎ+׭b*2ϻK>ۢӱeyԪXISUm[z+ugX%0lϏnvg!;t{BqPj>PyvR7Cj]O%+ݲ :qiMj6W}3vC/R=4Som]ŗ=ю, TF6U_-\6MyskwMr&Q\wjKܩyMϣUj0*}RZܷSdY3>Zjqj6TgzpA/M`/Cmл,޻feE[/+uk^Vs1W$G(JsW2ٰu*߻q*Y޵.Wi:ur5T),=0uRmho.twܖiYwrWHntvEj8qhf`Ͻpf(R&>Ki%I7$QӖm-2 ~yߗQ-앑/ x[k8nw.c㩵k}]FkbJl:{.(˩n0Hqvαp7 귎.Gupx[N`Yq'+ruU7[ү+>!xrȫoSo]OC# d^Q]\>!ƛGw^Mx"-+%vdX-:M2UR%d>%l ioSu6lsj7D P>XxHz Ukà(n^Q V>5cVtWj SEiJdznyej[lE' 3kuٌNn4JW)gB {4 j6&]' m-(ZMEz8cz>WZ6#7+[,MR-Z!4ܓtCyE|umj1ƽvƷV\;%>Q :#Le(iVz5 4ũۤUWxX ^(ҔsլB2w-V ^R+; ˂M\z+Uwr+RWY⺧~ Q*JcYSNSλUd8in=v K낫k\IRרSUaCFmϿ5̗P|u ZTԕ}>oYѲ1sfP+sQkX8Gb~6r,s>^\,mGL+7[n-E\.Fqḕcl*Jmjb5 ,m]c}NXfeVlǸJ5eˡ$4%g~N p4Y*WwW٧<8v#;qԩTut,m"#Y D\5V`\\Lȋ];LȇiS6ϝZ l>LruR\v=ǘϔDg=ԈdFZ+M{=|,[;0>RiSi4,S5}yxw&(E7&fݙ4UՕ! ~'Id)]ǽu2K-fޭ \08Vڅ쓬=Vy^^ IhyKR-B#Ըr=]mܻӾ'*Umkoy rTqT_i,/8Q^<ݤ|4ԻO(܄"'5N~#m.(Ҿ2i6Uev&I*<}҄$eNtÛzyWJubW^iBW.܅Wڮg]irO6Ve90sgv.+sV޿aޔ[p?3q*FutUo*eL\KM'EG*ZcAFfG5J 5jj=MJ3OK:k˝'NMB7m3uFҕ\-Ywg%PRqMIyZGY9|μvn߻5cWݷa^+X֥vnݘ\v7m>Fgzv"-;Ew֝}1|RjN𿊀7g#֟*GQQ|#/bo]p$>_Un9гUbn9׃ErQBU-^vDmVh'<R[fdHT]*~}3j;nvjc7s-rӳ Y8[n[1pJx kX[Jk9Mn!_Nю6x:iZ˦U |߉^Ԛ݃hYxk &U^bwKk.[jE+P(˞=9j@snCv7%c_7=xǁ<l {t'酚+1F‹l׭:ݻILruǶkL-L(K0L1&>wXB(pm;1fpnlp֓%Skidkt(U +xulo'/ڕeN r=^pZZ:Pnj8Hf"48ijY[ N[yZٻ+=  ø:3 ?^ܷ^Sr#YK[UF?CuhC b]GM')mڏsNrܗI]ljq6VB. W,UK"YX5{c >Iqā> T:n!,5l2VzCl|+I[*SrjnS6٨y+x,@>П.g+!rn9>N|W>OZT_ut Y""v7|sfި;Pclm EùN,{'fNT%U&LfH8~1v>Il}统u6P˗c(WV~H^bMU.o*oOF0N:_:6Smr_.b+|ݶYY غF,mwjv>f*>QM뭱Sd:`N{l/⎱;n-z~"Gze퇎J5S KG9!Gn;N1 ݎ h6m|S?ɂ5'WOÞ 7|7^ao @mxGmi^jϽ>01Mf0լD3-2T. VXR"ɥV Kl J O7|u?bvа;6.eߓ|[1bmRr,eRz`z 6܎-ͨku͹Fː dPhYgZUj}nvX;z=gVեTv_J }\1n7w2J?ޘγc\E 1Aޑzq;\r]]\Y&[nsNei\uURje*Qk2CSl*xJz-xٶlm+|UjUؓ`Ladqiĩ!Gd\W~fz;Tn*PdRM&T4`չSWq5k훶(N"Ӎ% V]֦wb.nUO!u*J&Oӕ2e|Z=eV쫚΅g#+/RW:طnbi*Wyo)p{:ETKؚR(RY+r웓r(IF) VmȵNB:h Q1ғ|u8E]{,'$-TR[j49l*3"I鯴zhd>Q+\BkNF=.$ZR4Nwհ(IpNi.(Gi33#33e$FXK*NdWrud[r{xnk$v2ıh+J1TQ[#JQl[tRO]LHKٮ NӍnF񨔤֞Em'MILB"ԋ%dBŋ+p̿_17jzT~4pc Vo\ƹb9Rq-'1j;8ܗ)hE%DZKS<璸Bu*%*Yw5ڻ9ۣ^z4U; Ñk\U(o~G?VUĎ:?P?_F_Kߤ~ᓾI |pr.Ok\SklRhҪz{­P .}SktZ7UQ4ڌIM8̈eaӊJZ%FFZu,KZvln廐SNFIVtuNi?CM5]+Ph,{jN JSR$IS^tSUVrORYu.9WyP6 [Kiu m!X|]Y79ӄ)\ģ)pbڳr%*&ꑶ_-H*dzk)1 V3')UAϹٶWRxe'պn۫h7AR9 EAJeGLms!%D| A 5]/Q3eb̄vnVn%za\m kZnv([emqrIҕij|""><hjJשvvǕ|Pޟs}V~2&Z?+2N&Z4w@)4iSڪ_>/JN9Hiۏuf8'It[ȲR.hZ$ȋ_Y ~U<UUO*6b)Ovzڜj\R̋.$FsQuҊj^נ䈈y<zZIuP[}Qm=C?zN(Exqu/kn S-FzKZzOסӽjJ\)F3b!r5ٝ|;6 o=-3*λ]αb\abqRi-w޵⦪~b8Kpo)Z=>)ғ"5/GTZLE-輵f7ݘ۹~+&+w/7GFI:l33fg.N~۲\2|*cnermnnM+Fq"ѪIz%j =YW8@~gc/~?N'?)«qȸs➟n=k" X“m֮VreMh2[uݖ] *FܖN)MȐ`f0 g,C9̑o;ddudJ=In13:ݒvvdMUEJLp^,6t-@͐9'{7m{-3,>hnF;ѰM)->>+Ěz!R* :`e--m7nB\u{b U>[8֪]6^ߤLʦ\DFNo$$dͶlgno8OrsQ\l̯hRo8tuNo+ CTxu!2[>ctFpeޓƻֶR"3QrQuOѳgwQr;S~)6HhZw/GgVTmUf_yt7%$];zLWF̰xy2Ʉu!MCmš_0[W6jf#a-KLi+3Q7c^qg%s<1aYIQeZf+}>;S6L0]Yu_h9߻<ƅpmiM$AVvŚ,*#t2.8Y)-Zhshü97/#Oro"u^/uFgWɺ,p:6a,^x%$Yve^3PƗMnTP&yS}OJ '덫MH^:rXԴJۋ/rI;S*,+yz1hv)Qw^ڍJ2oL׊q(\fDj:^T%vOadɂnS}ZO)N*λdaȜkG_PIEO}нa(^iQX᯦-7^)%g'SJx(.S9zVɴZ{E ))ۅi/s7 VIV-|sj0*UBTHIqRf>FP$KqN0 R̻8j\GcC}IUz\i 6F)Q{Gҧ3qSzKj-Az VЛS-zy:8*mNk|D鿓ND2u+0Yŝ7kqm·?8Ib]u>˗^_>(]vӋzv+ݩ){vZrJ2RQ몋C$z [,pp,8mڊbR]Il .f~d/ݓs㓓mͶ{mgjQwn=Oic9ܚm4Q/6ݨ[TƧ?nԶoytf{@AzT{e{[O'ZRZt~AGD?s3􌿂ՉIw'|~U\ w~di:Kޱ)U/sU%njѩ&GSP^ǝd)..!^U` 1wX[aԇSxoFV6_扐)T 2Mfd=ۖͭiZ7KK Bi9%7@<3<ճԻU,},a}FRqɛr i@ONJvK KLN M, ʖv0n-]DwlI-X6ܶ$Jʴh5O+mOI+Ra瞠\ MG7BفjYo1#͖0V`Ѱ2M?c8>-Crt*JkIGS:e#hPKx[鱼>{5m;wcն&>j-M֥^َ) 6yȜl_w{-ō̱r> U=]iw3)r*]:K]6BdCTZ|>gf}LW}[$'Y5 &c -j.z6R 67MԷFMnÌwI7w5E}o޽+K ֵy4܌ȥW"COyR[q5Ӱ͙f[v"_#q{MV6܍3"u9BK(41ӯqˇc${ߝCi6I(OmθzҜ5k^:>Jzw.>qV8{vU[ڶEm|DžBz].KHjI]x;Mɗ{m,qZXr忇2u^RO2Z}ZێS[2Jen!*NDcrBUً4<ǼMҲs1Zw57c3&ĖڻzmP*FuJG1-dN:|OU}ҵgi2t~F^^Z.VxjvŧnNNh<:]^~NN+ge^g.SԔGFe߯'[vn'(ScJ]kܗ7eJOlRrfziݮq̋S"\*U<*W]k$FջV}? 7g#֟*GQQ|#/bo]p$>_Un9;l S VvQU%OLU{οmU6bZ1MTx%!֙Q7, J=!3 ;Q,ڌ;6ͱ݅q^&ߔ·n #WbwӖX.HtG)N&d̵zpI,n cu ޖUj+VXUp[w]N o.J6Z8Ts&utxln;~HPHS/xw`G\ʡ¿rj Z^vt"[L:SD\h0sUwR,}[x^X,R2Vn< ]2YDr[SRKs8tXb̷G?Ps Tv 3be,zVz D[/I.KOEQrm'$7|[J>r S`5յwT#\w1FTz\Ԛ &"ׅhSHrD\'r]~/>p;:Piuu:"9ő=tTaS7V2rӷk7mb[^WmPp*[y.Þ6f]cizJCgRR@UVl큝.WJP1N{/\whZ ػϧӱE7|E֫Sί.x-Y&pi%v''-x6r'Ws*6=DwwUu]=C?MK [yrtܒG$!WGqJ*%SAz ED[^)/tė/g=#Omd.|^n/sl׉g DZqemqowݮRzUܜ=ڽ-o/Iۖ;qVʘgPp|mm;6zGl9.8pwWgsJ2qPbe}}UpNjٯ}7TMQKrؽtEx%v w߾8%|j;~|}pK]ơ/ w߾8%|j;~|}pK]ơ/ w&~e_H 8PL7:%ʭ5Kw&U2vwR_+rm'}C7#rWoO&HoG?M$UR7{FU]u ;# !Wk`|W>׹潇9Vn)6)*ҹ{%qV4q>W1vi#T"Qk&GwxcJBJ- Ϸ^ˁxkU}ԣ/3.;]J=<*)cS)ROK9H=,r zX @)cS)Da^ԽQ gxJI=w֣gf*TRj

• Received: July 13, 2022   • Revised: August 25, 2022   • Accepted: September 5, 2022

Copyright © The Korean Society for Precision Engineering

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

  • 16 Views
  • 0 Download
prev next
  • The relationship between the break-up of hypervelocity jets (> 4 km/s) and the decrease in penetration capability was addressed in this study. By applying a theoretical study, three cases were compared: when the jet was not broken, when there was a decrease in segment length after the jet was broken, and when the velocity gradient became zero after the jet was broken. The results showed that the decrease in penetration capability due to the break-up of the hypervelocity jet was due to the reduction in the length of the jet segments and the uniformity of the velocity after the breakup.

L

Jet Length

S

Stand-Off Distance

v

Velocity of Jet

ρ

Density

γ

Square Root of Density Ratio

P

Square Root of Density Ratio

φ

Pentration Parameter

ε

Length Reduction Rate of Broken Jet

θ

Velocity Reduction Rate of Broken Jet
성형작약탄두는 원통형 실린더 형태의 화약과 콘 형태의 금속 라이너를 결합한 구조로, 이로부터 형성된 초고속 제트는 수십 밀리미터에 이르는 철판을 관통할 수 있는 위력을 갖고 있다. 이는 중장갑을 장착한 전차와 같은 고위협 기동 무기 체계를 무력화하는 용도로 유용하게 활용되고 있다.
성형작약탄두의 침투 현상을 기술한 다양한 연구가 1940년대 이후로 지금까지 꾸준히 이어지고 있다. Birkhoff, et al.의 유체역학적 침투(Hydrodynamic Penetration) 이론은 수 km/s 이상의 초고속 제트(Hypervelocity Jet)가 표적에 충돌할 때, 그 충돌 지점에는 표적의 강도를 훨씬 초과하는(10 GPa 이상) 높은 압력이 발생하기 때문에 제트와 표적 재료의 거동을 유체의 흐름으로 가정한 유체역학적 침투 이론(Hydrodynamic Penetration Theory)을 제시하였다[1]. Eichelberger [2]와 Pack and Evans [3]는 표적의 강도와 초고속 제트의 침투 현상에 대한 실험적 분석을 통하여 Birkhoff, et al.의 유체역학적 침투 이론을 표적의 강도의 영향을 고려할 수 있는 이론으로 발전시켰다. 초고속 제트의 불균일 속도 분포를 고려한 침투 이론이 Abrahamson and Goodier [4]에 의해 제시되어 보다 일반적인 침투 현상을 분석할 수 있게 되었다.
이와 같은 침투 이론 외에도 수치해석을 이용한 연구를 통해 금속 표적은 물론 세라믹, 복합소재 및 콘크리트와 같은 다양한 소재의 표적을 대상으로 한 연구들과[5-9], 더 우수한 침투 능력 확보를 위한 라이너 설계 개선에 대한 연구들도 이루어졌다[10,11].
초고속 제트의 유체역학적 침투 이론의 유효성에 관하여, Gooch, et al.은 제트의 속도에 따라 침투 현상을 지배하는 인자가 제트와 표적의 밀도비(γ) 우위에서 표적 강도(Y) 우위로 전환됨을 보였다[12]. Kang [13,14] 및 Kang and Sin [15]은 유한요소해석 및 초고속 관통이론의 변형을 통해 유체역학적 침투 이론에 상응하는 제트의 침투 특성 및 침투 이론의 적용 범위에 대하여 연구하였다.
이와 같은 많은 연구를 통해 길고 빠른 초고속 제트일수록 침투 능력이 우수하다고 알려져 있다. 일반적으로 제트의 속도는 선두에서 가장 빠르며 후방에 이를 수록 느린 속도 구배를 갖는다. 이 속도 구배에 의해 표적까지 이동하는 동안 제트는 연장되는데, 과도한 연장은 제트의 끊어짐(Break-Up)을 초래하며 끊어진 제트의 침투 능력은 이전에 비해 감소한다고 받아들여지고 있다. 따라서, 끊어짐을 지연시키는 것이 더 큰 침투 능력 확보에 유리하다. Chou and Carleone은 제트의 항복응력과 밀도의 비(Y⁄ρ)가 제트의 끊어짐에 주는 영향에 대하여 Y⁄ρ이 낮을 수록 끊어지는 시기가 늦어짐을 보였다[16]. Carleone, et al.은 수치해석을 통해 제트의 넥킹(Necking)을 유발하는 임계파장(Critical Wavelength)은 연장률(Stretching Rate)와 관련되어 있음을 보였다[17]. 그리고 Hirsch [18,19]는 끊어짐 발생 시간과 성형작약탄두의 형상 설계를 연계한 연구를 수행하였다. 이러한 연구에도 불구하고, 제트의 끊어짐은 당연히 침투 능력의 감소를 유발하는 것으로 받아들여지고 있는 경향이 크다.
이에 저자는 그 원인에 대한 명시적인 설명이 필요하다 판단하였고 이전의 이론을 적용하여 제트의 물리적 특성 변화와 침투 능력 사이의 영향성을 살펴보기로 하였다. 본 연구는 제트 끊어짐과 침투 능력 감소의 상관관계를 총 세 가지 경우로 구분하여 분석하였다. 먼저 Abramson and Goodier (A-G) 이론[4]을 기반으로 끊어지지 않은 선형 속도 분포를 갖는 제트의 침투 능력을 분석하였다(경우 1). 다음으로 끊어짐을 고려할 수 있도록 A-G 이론을 변형하여 끊어진 제트 세그먼트의 길이 변화를 변수로 침투 특성을 분석하였다(경우 2). 마지막으로 끊어진 세그먼트의 길이도 감소되고 속도 구배 마저 사라진 후의 침투 능력을 Birkhoff, et al. [1]을 이용하여 분석하였다(경우 3).
이를 통해 초고속 제트의 끊어짐에 인한 침투 능력 감소는 끊어짐 자체가 원인이기보다, 끊어진 후 제트 세그먼트들의 길이 감소 및 속도 구배 감소에 기인함을 보였다.
2.1 제트 세그먼트의 길이 변화 및 질량 보존
초기 상태(t = t0)에서 길이가 L0이며, 4 km/s 이상인 선형 속도 분포 v(ζ)를 갖는 제트를 고려한다. 이 제트의 최대와 최소 속도는 각각 vmaxvmin이며 각각 제트의 선단과 꼬리의 속도이다. 시간이 경과함에 따라(ti) 불균일 속도 분포로 인해 제트의 길이는 Li로 연장된다. 이 과정 중 제트에 작용하는 항력 및 외력이 없고 끊어지지 않을 경우, vmaxvmin 은 변화하지 않지만 제트 길이에 걸친 속도 구배는 Fig. 1에 나타낸 것처럼 완만해진다.
Fig. 1

Length and velocity gradient changes of a hypervelocity jet with time

KSPE_2022_v39n11_869_f001.jpg
시간에 따른 제트 세그먼트의 길이 변화는 Δv = vmax-vmin, Δti = ti-1-ti, L-i=Li-L0 일 때, 다음과 같이 나타낼 수 있다.
(1)
Li=Li-1+ΔνΔti=L0+L-i
제트가 표적에 충돌하기 전 소모되기 전의 질량은 일정하다고 하면 ρiVi = ρiVi–1이고, 이를 제트의 반지름과 길이를 통해 나타내면,
(2)
LiL0=r0ri2=L0+L-iL0=1+L-iL0=λ-i
여기서 λ-i은 시간 t0로 부터 ti까지 제트의 연장률이다.
2.2 불균일 속도 분포를 갖는 초고속 제트의 침투 능력에 관한 이론적 배경
Abrahamson과 Goodier가 제안한 불균일 속도 분포를 갖는 제트의 침투 이론(A-G 이론)은 ‘전체 침투량’ P를 다음과 같이 기술한다.
(3)
P=γ+1νminγSS+Lνγζdζ-L+Sνmaxνminγ-1
여기서 ζ는 원점이 제트 세그먼트의 선단을 따라 이동하는 좌표계, S는 제트 선단과 표적의 표면 사이의 이격거리(Stand-Off)이다. 무차원 파라미터인 γ는 제트의 밀도(ρj)와 표적의 밀도(ρt) 비의 제곱근으로, γ=ρj/ρt이다. 제트의 속도 분포 v(ζ)가 길이에 따라서 선형적이라면 다음과 같이 나타낼 수 있다.
(4)
ν(ζ)=νmax-νmax-νminLζ
Kang and Shin은 선형적인 속도 분포를 갖는 제트에 대한 A-G 관통 이론의 다음과 같은 변형된 형태를 제시하였다.
(5.1)
P=Lνmaxγ+1-νminγ+1νminγνmax-νmin-1+Sνmaxνminγ-1
(5.2)
P=Lφl+Sφs
(5.3)
P=Pl+Ps
여기서, φlφs는 각각 제트 길이와 이격거리에 관련된 무차원 파라미터이다. 식(5.1)부터 식(5.3)과 같이 A-G 이론은 전체 침투량을 제트 길이와 이격거리에 대한 영향도로 구분하기 때문에 제트의 침투 능력을 선별적으로 검토하는데 유용하다.
2.3 총 침투량 P에 대한 PlPs의 상호 보전성
식(5.1)부터 식(5.3)은 시간 변화에 관련된 항이 없기 때문에, 초기의 제트의 물리량(L0, S0)을 갖고 발생된 제트의 전체 침투량은 시간이 경과한 뒤 이 물리량들의 변화가 생긴 후에 계산된 결과와 동일하다. 따라서 시간이 지남에 따라 제트의 연장에 의해 Pl의 영향도는 증가하지만 이격거리의 감소로 Ps의 영향도는 감소하는 것을 알 수 있다. 시간(ti, i = 0, 1, 2, ..)이 경과함에 따라 제트 길의 변화가 전체 침투량에 주는 영향을 고려하면,
(6)
Pl|t0=L0φlPl|t1=L1φl=Pl|t0L1L0=L0φlλ01Pl|t2=L2φl=Pl|t1L2L1=Pl|t1λ12=L0φlλ01λ12Pl|ti=Liφl=Pl|tiLiLi-1=Pl|ti-1λi-1i=L0φlk=1iλk-1k=L0φlλ-i
여기서 λi-1i는 시간 titi-1사이의 연장률, λ-i는 초기 시간 t0ti동안의 전체 연장률을 의미한다. 제트의 길이 연장을 일으키는 Δv=vmax-vmin이 양수이므로 λ-i 또한 양수이다. 따라서, Pl는 시간이 지남에 따라 전체 침투량에 더욱 큰 영향도를 갖게 된다.
반면에 이격거리의 변화가 전체 침투량에 차지하는 비율을 고려하면,
(7)
Ps|t0=S0φsPs|t1=S0-νmaxt1φs=S1φsPs|t2=S0-νmaxt2φs=S2φsPs|ti=S0-νmaxti-φs
즉, 제트의 연장에 따라 이격거리는 감소되며 PS가 전체 침투량에 차지하는 영향도는 감소한다.
임의의 시간 ti에서의 전체 침투량은 Pl|tiPs|ti의 합이다;
(8)
P|ti=L0φlλ-iS0-νmaxti-φs
식(8)을 시간에 대하여 미분하면,
(9)
dP|ti=φlνmax-νmin-φsνmaxdt=0
(10)
φlφs=νmaxνmax-νmin
즉, vmax가 클수록 PlPs의 영향도는 증가할 수 있다. 하지만 본 연구에서는 vmin > 4 km/s으로 제한하였으므로 Ps의 영향도는 항상 Pl보다 낮을 수밖에 없다.
3.1 끊어진 제트 세그먼트에 대한 A-G 이론의 변형
초기 상태(t0)에서 선형적인 속도 분포 v(ζ)와 길이 L0를 갖는 제트가 시간 tb에 끊어질 경우의 침투 능력의 변화를 고려하고자 한다. 제트 선두에서 발생한 끊어짐이 전 영역으로 전파되는 과정의 상세한 과정을 단순화하여 제트의 전 영역이 길이가 동일한 n개의 세그먼트로 나누어졌다고 가정하면 각 세그먼트의 길이는 L0/n로 동일하다.
가장 선두에서부터 i번째 세그먼트의 이격거리는 Fig. 2와 같이 앞선 1-(i-1)번째 세그먼트들의 길이의 합을 고려해야 함은 물론, 앞선 세그먼트들이 표적을 침투한 깊이의 합도 고려하여 식(11)로 나타낼 수 있다.
(11)
Si*=S1+k=1i-1Lk+Pk
Fig. 2

Stand-off distance of the k-th jet segment. (a) Consideration of length summation of previous jet segments, and (b) Consideration of partial penetration of previous jet segments

KSPE_2022_v39n11_869_f002.jpg
여기서, LkPk는 각각 i번째 세그먼트보다 앞선 k번째 세그먼트의 길이와 표적 침투량을 나타낸다.
이와 같은 고찰을 식(5)에 적용하면 식(12)와 같이 나타낼 수 있다.
(12)
Pi=Liνimaxγ+1-νiminγ+1νiminγνimax-νimin-1+Si*νimaxνiminγ-1
각 세그먼트에 대하여 식(12)를 이용하여 침투량을 계산한 후 합하면 끊어진 제트의 총 침투량을 구할 수 있다.
3.2 끊어진 제트의 물리량 변화에 대한 가정
끊어진 제트의 세그먼트는 길이와 속도 구배의 감소가 있을 수 있다. 끊어지기 직전까지 제트는 속도 구배에 의해 전방으로 연장되는데 이때 제트 내부에는 인장 응력이 발생된다. 이후, 생성된 세그먼트의 내부에는 이 응력이 이완되고 속도가 빠른 선두와 느린 꼬리는 세그먼트의 중심을 향해 가속 및 감속된다. 따라서 세그먼트의 길이는 끊어진 직후보다 짧아지고, 속도 구배는 적어진다[20].
본연구는 세그먼트의 길이 감소율(ε)을 매개변수로 정하여 침투 특성의 변화를 분석하였다. 반면, 세그먼트의 속도 구배 감소율(θ)에 대하여는 매개변수로 설정하기보다는 속도 구배가 사라진 후의 침투 특성을 분석하였다.

3.2.1 경우 1–끊어지지 않은 제트의 총 침투량

L0가 100 mm이고, vmax가 8 km/s로 일정한 대신 vmin이 4-8 km/s 범위 내에 있고, S0는 0-100 mm 범위에 있는 제트를 고려한다. 이 제트의 재질은 OFHC (Oxygen Free High Carbon)이고 Steel 소재 표적을 침투한다고 가정하면 밀도비 γ는 1.06이다. 이 경우의 끊어지지 않은 제트의 총 침투량을 식(5)를 이용해 계산 결과를 Fig. 3Table 1에 나타내었다.
Fig. 3

Comparisons of total penetration amount with S0 and Δv variations in the case of the jet for not broken jet with vmax = 8 kms

KSPE_2022_v39n11_869_f003.jpg
Table 1

Comparisons of total penetration amount with S0 and Δv variations in the case of the jet for not broken jet with vmax = 8 kms

Table 1
vmax = 8 km/s, not broken jet S0 [mm]
0 50 100
vmin [km/s] 4 217.0 271.2 325.5
5 172.2 204.5 236.8
6 142.6 160.4 178.3
7 121.6 129.2 136.8
8 106.0 106.0 106.0
S0가 멀고, Δv = vmax-vmin이 클수록 많은 침투량을 나타내었다. 반면, Δv가 적어질수록 S0에 무관하게 동일한 침투량 계산값으로 수렴하였다. 이는 Birkhoff, et al.의 침투 이론이 제트속도에 무관하게 초기 길이(L0) 와 밀도비(γ)만으로 침투량을 예측하는 것과 일치한다. 그리고 동일한 초기 길이와 밀도비를 갖는 경우일지라도 속도 구배가 큰 제트가 더 깊게 침투할 수 있음을 보여준다.

3.2.2 경우 2–끊어진 제트 세그먼트의 길이 변화가 발생한 경우의 총 침투량

제트가 끊어진 후 세그먼트 길이에 감소가 생긴 경우를 고찰하기 위해 초기 길이 L0 = 100 mm인 제트가 n = 40개의 균일한 길이를 갖는 세그먼트로 분할 되었다고 가정한다. 따라서 각 세그먼트의 길이는 L0/n이며, ε = 0 – 0.2까지 0.05씩 증가하도록 설정하여 식(12)를 이용해 계산하였다.
Tables 2(a)부터 2(e)에 이 계산 결과를 나타내었다. 전반적인 변화의 경향은 Fig. 3과 매우 유사하였다. ε = 0인 경우를 나타내는 Table 2(a)의 결과는 정확하게 경우 1의 결과와 일치하였다. 이는 제트가 끊어지는 것 자체가 침투량 감소의 원인은 아님을 보여준다. 또한 식(5)식(12)가 길이 변화와 속도 변화가 없는 경우 서로 같은 결과를 도출함을 보임으로써 식(11)의 이격거리 계산이 타당함을 입증한 결과로 판단된다. Tables 2(b)부터 2(e) 의 계산 결과를 비교해보면, ε이 0.05씩 증가함에 따라 총 침투량은 감소함을 보였고 그 감소량은 Δv가 클수록 더 크게 감소하였다. 이는 큰 Δv는 더 깊은 침투를 할 수 있는 잠재성을 의미하지만, 길이 감소가 커질수록 상대적으로 더 많은 침투 능력을 상실함을 나타낸다.
Table 2

Comparisons of total penetration amount with S0, Δv and ε variations in the case of broken jet

Table 2
(a) Broken jet,
ε = 0.00
vmax =8 km/s
S0 [mm]
0 50 100
vmin [km/s] 4 217.0 271.2 325.5
5 172.2 204.5 236.8
6 142.6 160.4 178.3
7 121.6 129.2 136.8
8 106.0 106.0 106.0
(b) Broken jet,
ε = 0.05
vmax =8 km/s
S0 [mm]
0 50 100
vmin [km/s] 4 206.1 260.44 314.6
5 163.6 195.9 228.2
6 135.5 153.3 171.1
7 115.6 123.2 130.8
8 100.7 100.7 100.7
(c) Broken jet,
ε = 0.10
vmax =8 km/s
S0 [mm]
0 50 100
vmin [km/s] 4 195.3 249.5 303.8
5 155.0 187.3 219.6
6 128.4 146.2 164.0
7 109.5 117.1 124.7
8 95.4 95.4 95.4
(d) Broken jet,
ε = 0.15
vmax =8 km/s
S0 [mm]
0 50 100
vmin [km/s] 4 184.4 238.7 292.9
5 146.4 178.7 210.9
6 121.2 139.1 156.9
7 103.4 111.0 118.6
8 90.1 90.1 90.1
(e) Broken jet,
ε = 0.15
vmax =8 km/s
S0 [mm]
0 50 100
vmin [km/s] 4 173.6 227.8 282.1
5 137.8 170.1 202.3
6 114.1 131.9 149.8
7 97.3 104.9 112.5
8 84.8 84.8 84.8

3.2.3 경우 3–제트의 끊어짐이 일어나 세그먼트의 길이 변화 및 속도 구배가 사라진 경우의 총 침투량

본 절의 경우는 각 세그먼트들의 속도 구배가 사라진 경우로, Birkhoff, et al. [1]의 이론을 이용하여 직관적으로 계산할 수 있다. 이전의 3.2.1절부터 3.2.2절을 참고하면 속도 구배가 없으므로 세그먼트의 길이 연장 효과도 사라진다. 따라서 속도 구배가 사라진 세그먼트들의 총 침투량은 길이 변화가 생긴 각 세그먼트를 일렬로 이은 하나의 제트의 침투량과 같으며 다음과 같이 나타낼 수 있다.
(13)
P=1-εL0γ
식(13)으로 계산된 결과는 경우 Tables 2(a)부터 2(e)vmin = 8 km/s 인 경우와 일치한다. 특히 매우 짧게 형성된 세그먼트의 경우, 각 세그먼트 내의 속도 차이는 무시할 수 있을 정도로 적어지므로 속도 차이와 길이와 같은 인자들이 침투량 증가에 불리한 방향으로 변화하게 됨을 유추할 수 있다.
본 연구는 끊어진 제트 세그먼트의 표적 침투 특성을 이론적인 접근을 통해 고찰하였다. 먼저, A-G 이론[4]을 선형적인 속도 분포를 갖는 제트에 대한 식으로 변형하였다. 또한, 하나의 제트가 여러 세그먼트로 분할 되었을 때, 한 세그먼트의 표적침투량은 그 세그먼트의 표적 표면으로부터의 거리와 앞선 세그먼트들의 누적 침투량이 더해진 거리를 이격거리로 치환하여야 함을 보였다.
이러한 이론적 배경을 통하여 제트가 끊어지지 않은 경우 1, 제트가 끊어지면서 일정한 비율만큼 세그먼트의 길이가 짧아진 경우 2, 그리고 끊어진 제트의 길이가 극단적으로 짧아져 속도 구배가 사라진 경우 3과 같이 구분하여 총 침투량의 변화를 비교하였다.
이를 통해 제트가 끊어지는 경우 발생하는 표적 침투 능력 감소는 끊어짐 자체에 기인하기보다는 끊어진 후의 각 제트 세그먼트들의 길이 감소에 의한 것이 주요한 것으로 본 연구의 결과를 통해 예상할 수 있다.
다만 속도가 4 km/s 이상인 초고속 제트에 한정하여 연구가 이루어진 점, 실험을 통한 연구의 신뢰성 검증하지 못한 점이 이 연구의 실적용은 제한 사항을 갖는다. 하지만 실험 방법론을 확립하기에 앞서 이론적 고찰을 시도한 것은 의의가 있다고 판단된다. 이러한 연구는 향후 관련 분야의 연구에 있어, 제트의 끊어짐 이후에도 길이 수축이 적게 발생할 수 있는 라이너 재료의 선정 또는 제트 형성 메커니즘을 개발하는 연구에 기여할 것으로 기대된다.
  • 1.
    Birkhoff, G., MacDougall, D. P., Pugh, E. M., Taylor, S. G., (1948), Explosives with lined cavities, Journal of Applied Physics, 19(6), 563-582.
    10.1063/1.1698173
  • 2.
    Eichelberger, R. J., (1956), Experimental test of the theory of penetration by metallic jets, Journal of Applied Physics, 27(1), 63-68.
    10.1063/1.1722198
  • 3.
    Pack, D., Evans, W., (1951), Penetration by high-velocity (Munroe’) jets: I, Proceedings of the Physical Society. Section B, 64(4), 298.
    10.1088/0370-1301/64/4/302
  • 4.
    Abrahamson, G., Goodier, J., (1963), Penetration by shaped charge jets of nonuniform velocity, Journal of Applied Physics, 34(1), 195-199.
    10.1063/1.1729065
  • 5.
    Cour-Palais, B. G., (1987), Hypervelocity impact in metals, glass and composites, International Journal of Impact Engineering, 5(1-4), 221-237.
    10.1016/0734-743X(87)90040-6
  • 6.
    Bless, S., Rosenberg, Z., Yoon, B., (1987), Hypervelocity penetration of ceramics, International Journal of Impact Engineering, 5(1-4), 165-171.
    10.1016/0734-743X(87)90036-4
  • 7.
    Zilberbrand, E., Vlasov, A., Cazamias, J., Bless, S., Kozhushko, A., (1999), Failure wave effects in hypervelocity penetration, International Journal of Impact Engineering, 23(1), 995-1001.
    10.1016/S0734-743X(99)00142-6
  • 8.
    Dawson, A., Bless, S., Levinson, S., Pedersen, B., Satapathy, S., (2008), Hypervelocity penetration of concrete, International Journal of Impact Engineering, 35(12), 1484-1489.
    10.1016/j.ijimpeng.2008.07.069
  • 9.
    Xue, L.-Z., Li, K.-Z., Jia, Y., Zhang, S.-Y., Ren, J.-J., You, Z.-Y., (2016), Effects of hypervelocity impact on ablation behavior of SiC coated C/C composites, Materials & Design, 108, 151-156.
    10.1016/j.matdes.2016.06.106
  • 10.
    Kang, Y., Jeon, J., (2018), Finite element analysis of the impact of liner thickness and hydrodynamic limit on the penetration depth of a shaped charge warhead, Journal of Mechanical Science and Technology, 32(12), 5797-5805.
    10.1007/s12206-018-1127-3
  • 11.
    Fedorov, S., Bayanova, Y. M., Ladov, S., (2015), Numerical analysis of the effect of the geometric parameters of a combined shaped-charge liner on the mass and velocity of explosively formed compact elements, Combustion, Explosion, and Shock Waves, 51(1), 130-142.
    10.1134/S0010508215010141
  • 12.
    Gooch, W., Burkins, M., Walters, W., Kozhushko, A., Sinani, A., (2001), Target strength effect on penetration by shaped charge jets, International Journal of Impact Engineering, 26(1-10), 243-248.
    10.1016/S0734-743X(01)00083-5
  • 13.
    Kang, Y., (2019), Finite element analysis for the penetration phenomena of shaped charge jets using hydrodynamic theory, Journal of the Computational Structural Engineering Institute of Korea, 32(2), 133-140.
    10.7734/COSEIK.2019.32.2.133
  • 14.
    Kang, Y., (2019), A study on the strength irrelevance of hypervelocity penetration, Journal of the Computational Structural Engineering Institute of Korea, 32(3), 199-203.
    10.7734/COSEIK.2019.32.3.199
  • 15.
    Kang, Y., Sin, H.-C., (2020), Effective velocity range of theoretical hypervelocity penetration models, Journal of Mechanical Science and Technology, 34(6), 2497-2506.
    10.1007/s12206-020-0525-5
  • 16.
    Chou, P. C., Carleone, J., (1977), The stability of shaped-charge jets, Journal of Applied Physics, 48(10), 4187-4195.
    10.1063/1.323456
  • 17.
    Carleone, J., Chou, P., Walters, W., Jameson, R., Ciccarelli, R., (1979), Prediction of shaped-charge jet breakup time and calculation of penetration (U), (Report No. ARBRL-CR-00396), US Army Ballistic Research Laboratories (BRL).
  • 18.
    Hirsch, E., (1981), A model explaining the rule for calculating the break-up time of homogeneous ductile metals, Propellants, Explosives, Pyrotechnics, 6(1), 11-14.
    10.1002/prep.19810060104
  • 19.
    Hirsch, E., (1981), The natural spread and tumbling of the shaped charge jet segments, Propellants, Explosives, Pyrotechnics, 6(4), 104-111.
    10.1002/prep.19810060406
  • 20.
    Welsh, B. S., (1995), High speed deformation and break-up of shaped charge jets. http://eprints.nottingham.ac.uk/42489/1/358179.pdf
Youngku Kang
KSPE_2022_v39n11_869_bf001.jpg
CAE and System Engineer in Laser Division of Hanwha Co., Ltd.. He got his Ph. D. degree from the School of Aerospace and Mechanical Engineering of Seoul National University. He has been worked on the design of mechanical systems by using CAE based on the finite element analysis.

Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:

Include:

A Theoretical Study on the Decrease in Target Penetration Capability after Break-Up of Hypervelocity Jets
J. Korean Soc. Precis. Eng.. 2022;39(11):869-874.   Published online November 1, 2022
Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:
Include:
A Theoretical Study on the Decrease in Target Penetration Capability after Break-Up of Hypervelocity Jets
J. Korean Soc. Precis. Eng.. 2022;39(11):869-874.   Published online November 1, 2022
Close

Figure

  • 0
  • 1
  • 2
A Theoretical Study on the Decrease in Target Penetration Capability after Break-Up of Hypervelocity Jets
Image Image Image
Fig. 1 Length and velocity gradient changes of a hypervelocity jet with time
Fig. 2 Stand-off distance of the k-th jet segment. (a) Consideration of length summation of previous jet segments, and (b) Consideration of partial penetration of previous jet segments
Fig. 3 Comparisons of total penetration amount with S0 and Δv variations in the case of the jet for not broken jet with vmax = 8 km⁄s
A Theoretical Study on the Decrease in Target Penetration Capability after Break-Up of Hypervelocity Jets
vmax = 8 km/s, not broken jet S0 [mm]
0 50 100
vmin [km/s] 4 217.0 271.2 325.5
5 172.2 204.5 236.8
6 142.6 160.4 178.3
7 121.6 129.2 136.8
8 106.0 106.0 106.0
(a) Broken jet,
ε = 0.00
vmax =8 km/s
S0 [mm]
0 50 100
vmin [km/s] 4 217.0 271.2 325.5
5 172.2 204.5 236.8
6 142.6 160.4 178.3
7 121.6 129.2 136.8
8 106.0 106.0 106.0
(b) Broken jet,
ε = 0.05
vmax =8 km/s
S0 [mm]
0 50 100
vmin [km/s] 4 206.1 260.44 314.6
5 163.6 195.9 228.2
6 135.5 153.3 171.1
7 115.6 123.2 130.8
8 100.7 100.7 100.7
(c) Broken jet,
ε = 0.10
vmax =8 km/s
S0 [mm]
0 50 100
vmin [km/s] 4 195.3 249.5 303.8
5 155.0 187.3 219.6
6 128.4 146.2 164.0
7 109.5 117.1 124.7
8 95.4 95.4 95.4
(d) Broken jet,
ε = 0.15
vmax =8 km/s
S0 [mm]
0 50 100
vmin [km/s] 4 184.4 238.7 292.9
5 146.4 178.7 210.9
6 121.2 139.1 156.9
7 103.4 111.0 118.6
8 90.1 90.1 90.1
(e) Broken jet,
ε = 0.15
vmax =8 km/s
S0 [mm]
0 50 100
vmin [km/s] 4 173.6 227.8 282.1
5 137.8 170.1 202.3
6 114.1 131.9 149.8
7 97.3 104.9 112.5
8 84.8 84.8 84.8
Table 1 Comparisons of total penetration amount with S0 and Δv variations in the case of the jet for not broken jet with vmax = 8 km⁄s
Table 2 Comparisons of total penetration amount with S0, Δv and ε variations in the case of broken jet