

This study introduces a novel retainer ring design aimed at mitigating the edge effect during chemical mechanical planarization. The innovative design features an arch-shaped geometry that creates a bending effect, thereby reducing excessive pressure on the wafer's edge. A two-dimensional axisymmetric finite element model was developed, and simulation data were utilized to create a metamodel. Multi-objective optimization was conducted using an evolutionary algorithm, focusing on the normal contact stress on the wafer surface. Representative Pareto-optimal designs were analyzed to assess the distribution of normal contact stresses. The results demonstrated that the proposed design significantly reduced peak normal stresses and enhanced stress uniformity, especially at the wafer edge. This optimized retainer ring is anticipated to improve wafer edge quality and increase semiconductor yield.