The FEM analysis of machine tools is the general analysis process to evaluate machine performance in the industry for a long time. Despite advances in FEM software, because of difficult simplicity of CAD drawing, little experience of joints stiffness modeling and troublesome manual contact area divide for bindings, the industry designers think the FEM analysis is still an area of FEM analysis expert. In this paper, the automation of modeling process with simplicity of drawing, modeling of joints and contact area divide is aimed at easy FEM analysis to enlarge utilization of a virtual machine tools. In order to verify the effects of modeling automation, a slant bed type model with tilting table is analyzed. The results show FEM modeling automation method only needed 45 minutes to complete the whole modeling process, while manual modeling method requires almost one month with 8200 calculations for coordinate transformations and stiffness data input.
The bearing coupling section of machine tools is the most important factor to determine their static/dynamic stiffness. To ensure the proper performance of machine tools, the static/dynamic stiffness of the rotating system has to be predicted on the design stage. Various parameters of the bearing coupling section, such as the spring element, node number and preload influence the characteristics of rotating systems. This study focuses on the prediction of the static and dynamic stiffness of the rotating system with the bearing coupling section using the finite element (FE) model. MATRIX 27 in ANSYS has been adopted to describe the bearing coupling section of machine tools because the MATRIX 27 can describe the bearing coupling section close to the real object and is applicable to various machine tools. The FE model of the bearing couple section which has the sixteen node using MATRIX 27 was constructed. Comparisons between finite element method (FEM) predictions and experimental results were performed in terms of the static and dynamic stiffness.
FEM analysis is essential to shorten the development time and reduce the cost for developing high-performance machine tools. Mount joint parts play important role to ensure static and dynamic stability of machine tools. This paper suggests a computational modeling of mount joint part of machine tools. MATRIX27 element of ANSYS is adopted to model mount joint parts. MATRIX27 allows the definition of stiffness and damping matrices in matrix form. The matrix is assumed to relate two nodes, each with six degrees of freedom per node. Stiffness and damping values of commercial mount products are measured to build a database for FEM analysis. Jack mounts with rubber pad are exemplified in this paper. The database extracted from the experiments is also used to estimate of stiffness and damping of untested mounts. FEM analysis of machine tools system with the suggested mount computational model is performed. Static and dynamic results prove the feasibility of the suggested mount model.
This paper suggests a computational modeling to reflect static/dynamic characteristics of LM bearings. A theoretical study for modeling LM bearings is elucidated by using the Hertz contact theory, the Lagrange’s equation of motion, normal mode analysis and a calculation of equivalent moment center. The complex geometry of LM bearings is replaced by a simplified model with eight springs only. The suggested model reflects static and dynamic characteristics of LM bearings without any consideration for the shape of the bed or stages on the LM bearings. The modal experimental results are compared to the simulation results with the suggested computational modeling. The difference between the experiments and simulation is calculated less than 8%.
Virtual machine tools have been magnified recently as manufacturers could estimate performances of machine tools before design and manufacturing of them. However, it requires much time and efforts to make FEM models and predict precision of machine tools well because machine tools are composed of many joints such as bolt joints, LM joints, rotational bearing joints and mounts. Especially, we have studied computational modeling methods of bolt joints to predict precision of machine tools well in this paper. Stiffness and damping coefficients of bolt joints are investigated and generalized with respect to fasten forces through experiments and FEM analysis. Matrix 27 element of ANSYS is used and bolt joints are simplified as square areas with 8 nodes to apply stiffness and damping simultaneously. Additionally, coordinate transformation of matrix 27 for bolt joints is induced to apply to skewed bolt joints of machine tools and evaluate it using FEM analysis.
In this paper, we present research experimental results about the different thickness T-joint welding of the high power continuous wave(CW) Nd:YAG laser for the secondary battery of a vehicle. Although the conventional method used for the secondary battery is a argon TIG welding, we utilize a laser welding to improve Tungsten Inert Gas(TIG) welding’s weakness. The laser, which has a couple of advantage such as aspect ratio, low Heat Affected Zone(HAZ), good welding quality and fast productivity utilized in this work is a CW Nd:YAG laser. In order to observe laser welding sections, we used a optical microscope. Through the analysis of the metallographic, hardness, aspect ratio, and heat input, we obtained the desired data in condition of 1800 W laser beam power and 1.8 m/min and 2.0 m/min laser beam travel speeds. In order to compare electric resistances of the argon TIG welding and laser welding, we made an actual battery and the electric resistance of the laser welding is reduced by 40~45% comparing with the argon TIG welding.
Laser beam machining (LBM) using nanosecond pulsed laser is widely known to be rapid and non-wear process for micromachining. However, the quality itself cannot meet the precision standard due to the recast layer and heat affected zone. In this paper, a fabrication method for machining micro features in stainless steel using a hybrid process of LBM using nanosecond pulsed laser and electrochemical etching (ECE) is reported. ECE uses non-contacting method for precise surface machining and selectively removes the recast layer and heat affected zone produced by laser beam in an effective way. Compared to the single LBM process, the hybrid process of LBM and ECE enhanced the quality of the micro features.
In the phase-shift measurement method, the distance light travels can be obtained based on the phase difference between the reference signal and the measured signal. When the object having various colors is measured, the intensity of the measured signal much varies even at the same distance, and it causes different phase delay due to wide dynamic range input to a signal processing circuit. In this work, an measured intensity control method is proposed to solve this phase delay problem.
Accelerometers play a key role in the structural assessment. However, the current electric type accelerometers have certain limitations to apply some structures such as heavy cabling labor, installed sea structure and sensitivity to electromagnetic fields. An optical Fiber Bragg Grating (FBG) accelerometer has many advantages over conventional electrical sensors since their immunity to electromagnetic interference and their capability to transmit signals over long distance without any additional amplifiers, and there is no corrosion from sea water. In this paper, we have developed a new FBG-based accelerometer. The accelerometer consists of two cantilevered type beams and a mass and two rollers. A bragg grating element is not directly glued to a cantilever to avoid possible non-uniform strain in the element. Instead, the bragg grating element will be attached to rotation part that rolled inducing vertical movement of the mass and support cantilever beams so that the bragg grating element is uniformly tensioned to achieve a constant strain distribution. After manufacturing, we will prove the performance and the natural frequency of the accelerometer through the experiment with a vibration shaker. The FBG-based accelerometer is developed for measuring the vibration not exceeding 50 ㎐ for the marine and civil structures.
In this study, for reducing the residual vibration in high speed motion control stage, an improved 5th order polynomial motion profile was developed. When a stage is moving, the current through the motor coils has the same profile of input motion profile of acceleration, therefore the characteristics of the acceleration input profile directly affect on the performance of the amplifier that includes the current control loop. Commonly low cost amplifier and motor has a narrow current control bandwidth, therefore the proposed algorithm was designed based on this practical constraint. Simulation and experimental results showed that the proposed algorithm clearly has low residual vibration characteristics than conventional 5th order polynomial motion profile on the same drive condition.
In this paper, we present an inverse kinematics of a 7-dof Anthropomorphic robot arm using conformal geometric algebra. The inverse kinematics of a 7-dof Anthropomorphic robot arm using CGA can be computed in an easy way. The geometrically intuitive operations of CGA make it easy to compute the joint angles of a 7-dof Anthropomorphic robot arm which need to be set in order for the robot to reach its goal or the positions of a redundant robot arm’s end-effector. In order to choose the best solution of the elbow position at an inverse kinematics, optimization techniques have been proposed to minimize an objective function while satisfying the eulerlagrange equation.
In this paper, the states and parameters in a dynamic system are estimated by applying an Unscented Kalman Filter (UKF). The UKF is widely used in various fields such as sensor fusion, trajectory estimation, and learning of Neural Network weights. These estimations are necessary and important in determining the stability of a mobile system, monitoring, and predictions. However, conventional approaches are difficult to estimate based on the experimental data, due to properties of non-linearity and measurement noises. Therefore, in this paper, UKF is applied in estimating the states and parameters needed. An experimental dynamic system has been set up for obtaining data and the experimental data is collected for parameter estimation. The measurement noises are primarily reduced by applying the Low Pass Filter (LPF). Given the simulation results, the estimated error rate is 39 percent more efficient than the results obtained using the Least Square Method (LSM). Secondly, the estimated parameters have an average convergence period of four seconds.
Creep characteristic is an important failure mechanism when evaluating engineering materials that are soft material as polymers or used as mechanical elements at high temperatures. One of the popular thermo-plastic polymers, Acrylonitrile Butadiene Styrene (ABS) which is used broadly for machine elements material, as it has excellent mechanical properties such as impact resistance, toughness and stiffness compared to other polymers, was studied for creep characteristic at different levels of stress and temperatures. From the experimental results, the creep limit of ABS at room temperature is 80 % of tensile strength which is higher than PE and lower than PC or PMMA. Also the creep limits decreased to linearly as the temperatures increased, up to 80℃ which is the softening temperature of Butadiene (82℃). Also the secondary stage of creep among the three creep stages for different levels of stress and temperature was non-existent which occurred for many metals by strain hardening effect.
Process conditions for generating nano patterns handle different process according to the pattern characteristics, and different process data according to patterns in questions. To efficiently find optimal process conditions for generating nano patterns, process data by experiment is needed consideration of the pattern characteristics concerning the equipment. In particular, coating methods of a cylindrical mold differ from it of a flat plate because of viscosity of coating materials. Also the coating thickness affects nano process and pattern line width. So coating method of coating thickness for cylindrical mold is very important on nano pattern generating. In this study, a method is proposed for coating Photo Resist through the spray in order to coat cylindrical mold and measuring the thickness of coating using measuring tip considering the size of cylindrical mold because there is no method in the existing SEM. The proposed method is applied to a real printed electronics system to verify its accuracy and efficiency.