Condenser tubes are mainly produced by precision extrusion with a porthole die and are used in the flow pass of refrigerant cooling systems in automobiles. The recent technical trend of condenser tube requires the tube to be of more multi cellizing, high strength and small size, and to increase the heat transfer area and heat efficiency. Hence, this paper is shown that the results of FE-simulation are in good agreement with the experimental ones. Finally, the extrusion die shape is proposed through analysis of FE-simulation and performance of trial extrusion. Chamber shape dimension and initial temperatures of die is adjusted analysis results. And the possibility of extrusion is estimated that forming load, welding pressure and stress analysis of die in this paper. The validity of simulated results was verified into extrusion experiments on the condenser tubes.
A cutting device capable of generating various shapes of the cyclic elliptical trajectory of a cutting tool was proposed and micro v-grooving experiments were performed to investigate the characteristics of elliptical vibration cutting(EVC). The proposed cutting device is comprised of a pair of parallel piezoelectric actuators with which harmonic voltages of varying phase difference and magnitude are supplied, creating various shapes of the elliptical tool path. The attributes of the elliptical locus involving the direction of the axis of an ellipse, the rotational direction and amplitudes of a trajectory were fine-tuned for stable operation of the EVC. The EVC characteristics performed with brass and copper revealed reduction in the cutting resistance and suppression of burr formation, resulting in the enhancement of form accuracy of machined micro- features. While the effect of the EVC increases with the increase of excitation frequency and the amplitude, it is found that a change in the cutting force decreases as the amplitude of an elliptical locus increases.
A new optimal state feedback and disturbance feedforward control design in the sense of minimizing L₂-gain from disturbance to control output is proposed for disturbance attenuation of systems with bounded control input and measurable disturbance. The controller is derived in the framework of linear matrix inequality(LMI) optimization. A gain scheduled state feedback and disturbance feedforward control design is also suggested to improve disturbance attenuation performance. The control gains are scheduled according to the proximity to the origin of the state of the plant and the magnitude of disturbance. This procedure yields a stable linear time varying control structure that allows higher gain and hence higher performance controller as the state and the disturbance move closer to the origin. The main results give sufficient conditions for the satisfaction of a parameter-dependent performance measure, without violating the bounded control input condition.
To prevent an insulator failure, an automatic cleaning and inspection robot was developed for suspension insulator strings. The robot autonomously moves along the insulator string using the clamps installed on its two moving frames. Especially, unlike the existing cleaning robots using jets of water, the robot system adopts a dry cleaning method using rotating brushes and a circular motion guide. In addition, a mechanized brush bristles and a voltage-balancing contactor are devised to increase cleaning efficiency and to prevent arc generation under live-line conditions, respectively. We confirmed its effectiveness through experiments.
The dark-field laser scattering system has been developed to inspect surface defects in infrared cut-off filters and then laser scattering characteristics against the defects are investigated. The qualitative analysis for the reliable and accurate detection performance is described through the correlation between incident angles of a laser and viewing ones of a camera. In this paper, reliable and important information with laser scattering is given for the surface defect inspection of IR filters. Its performance has been verified through various experiments.
In this study, design and manufacturing of plastic injection mold with cavity pressure/temperature sensors were performed for tensile test specimen. International standard system for plastic tensile specimen was applied to design an injection molding system. Cavity pressure and temperature sensors were placed on the side of fixed platen of the injection mold to prevent them from external impact damage. Injection molding experiments with variations of injection speed and melt temperature were performed and then tensile test of the manufactured polycarbonate specimens was also performed. It was shown that injection molding processing parameters can have effect on the mechanical properties of the plastic injection molded part.
Many manufacturing devices must execute motions as quickly as possible to achieve profitable high-volume production. Most of them have devices having flexibility and a time delay of one sampling is added to the plants when they are controlled by fast discrete controllers, which brings about non-minimum phase zeros. This paper develops a control strategy that combines feedforward and feedback control with command shaping for such devices. First, the feedback controller is designed to increase damping and eliminate steady-state error. Next, the feedforward controller is designed to speed up the transient response. Finally, an appropriate reference profile is generated using command-shaping techniques to ensure fast point-to-point motions with minimum residual vibration. The particular focus of the paper is to understand the interactions between these individual control components. The resulting control strategy is demonstrated on a model of a high-speed semiconductor manufacturing machine.
Jettability analysis using one-dimensional(1D) lumped parameter model has been investigated to design the industrial inkjet head with proper drop velocity and drop volume. By simplifying the inkjet head system into an equivalent electrical circuit, lumped model has been developed. Performance of the lumped model is verified by the comparison between measured results of droplet velocity and ejection volume and predicted value. Also, the jetting performance of an inkjet head is characterized by varying the design parameter and driving condition. As a result, simulation results shows good agreement with the experimentally measured value. The developed lumped model enables to easily understand the effect of dimension change and predict the jetting performance.
We have designed a high transmission C-shaped aperture using finite differential time domain(FDTD) technique. The C-shaped aperture was fabricated in the aluminum thin film on a glass substrate using a focused ion beam(FIB) milling. Nano-size patterning was demonstrated with a vacuum contact device to keep tight contact between the Al mask and the photoresist. Using 405 nm laser, we recorded a 50 nm-size dot pattern on the photoresist with the aperture and analyzed the spot size dependent on the dose illuminated on the aperture.