Cellulose Electro-Active Paper (EAPap) has been known as a new smart material that is attractive for a bio-mimetic actuator due to its merits in terms of lightweight, dry condition, large displacement output, low actuation voltage and low power consumption. Cellulose EAPap is made by regenerating cellulose and aligning its micro-fibrils. This paper introduces several EAPap materials, which are based on natural cellulose and its hybrid nanocomposites mixed/blended with inorganic functional materials. By chemically bonding and mixing with carbon nanotubes and inorganic nanoparticles, the cellulose EAPap can be a hybrid nanocomposite that has versatile properties and can meet material requirements for many applications. Recent research trend of the cellulose EAPap is introduced in terms of material preparations as well as application devices including actuators, temperature and humidity sensors, biosensors, chemical sensors, and so on. This paper also explains wirelessly driving technology for the cellulose EAPap, which is attractive for bio-mimetic robotics, surveillance and micro-aerial vehicles.
In this work the potential, and the perspectives of the dielectric elastomer actuator are overviewed briefly. As an exemplary work, we introduce a novel contractile artificial muscle actuator based on Synthetic Elastomer(SE). SE is the name of new dielectric elastomer material we have developed and its synthesis procedures and evaluations are described in the first. The contractile artificial muscle actuator is made by stacking the actuator unit one by one along the in thickness direction and finished up by bonding the multi-stacked actuator. Its possibility for the robotic actuator is discussed and demonstrated via experiments.
Several biomimetic artificial muscles including the electro-active synthetic polymers (SSEBS, PSMI/PVDF, SPEEK/PVDF, SPSE, XSPSE, PVA/SPTES and SPEI), bio-polymers (Bacterial Cellulose and Cellulose Acetate) and nano-composite (SSEBS-CNF, SSEBS-C60, Nafion-C60 and PHF-SPEI) actuators are introduced in this paper. Also, some applications of the developed biomimetic actuators are explained including biomimetic robots and biomedical active devices. Present results show that the developed electro-active polymer actuators with high-performance bending actuation can be promising smart materials applicable to diverse applications.
With the help of nanoscale materials like carbon nanotube (CNT), there is the potential to develop new actuators that will provide higher work per cycle than previous actuator technologies, and generate much higher mechanical strength. In this study, the electrochemical actuation characteristics of nano carbon materials were experimentally studied to develop electrochemical actuators. The electrochemical actuators were composed of aqueous NaCl electrolyte and their actuating electrodes were made of multi-walled carbon nanotube (MWCNT)/polystyrene composite and graphene respectably. Actuation is proportional to charging transfer rate, and the electrolysis with an AC voltage input has very complex characteristics. To quantify the actuation property, the strain responses and output model were studied based on electrochemical effects between the nano carbon films and the electrolyte.
This paper suggests a new film-type haptic actuator based on cellulose acetate electro-active paper. Conventional tiny haptic actuators in mobile devices can create vibrotactile sensation at only near resonant frequency. The strategy of operating near the resonant frequency, however, brought a new issue for creating vibrotactile sensation which can be strong enough to feel in arbitrary frequency. Another problem is that the size of the conventional actuator is not small enough to be embedded into slim mobile devices. In order to achieve these issues, we propose a thin and tiny actuator based on a cellulose acetate material charged with an electric potential. The motion of the actuator can be a concave or a convex by controlling a polarity of both charged membranes and the actuator performance can be modulated by increasing level of biased electric potential.
These days the number of aged and disabled people is increasing rapidly. But most of the disabled or the aged who have the ability to work, want to engage in economic activities and solve social restrictions as well as their bad financial conditions. This paper concerns about the tracking control of an electric wheelchair robot for welfare vehicle where the seat and electric wheelchair are separated and electric wheelchair robot must be autonomously controlled without the help of assistant. So the aged or the disabled people can drive welfare vehicle by himself by adopting this system. Therefore the concept of both an autonomous driving of electric wheelchair and path tracking robots is required in this system. Finally we suggested fuzzy controller in order to control the path tracking of electric wheelchair robot and compared the capability of the proposed controller with conventional PID controller.
Mechanisms of the robot system should be developed according to the task. In this study, we propose improving adaptability of the robot mechanism with the modularized joint mechanism. Adaptability is the measure of the system ability to cope with change or uncertainty. Modular type joint has been widely used in development of various robots including reconfigurable robots. To build robotic systems more flexibly and quickly with low costs of manufacturing and maintenance, we have designed a modular type joint with one degree of freedom for general purpose. This module is designed to be compact, light-weight and self-controlled. In this design, we consider the kinematics and dynamics properties of the modular type joint.
Weather strip is a functional component of a car body and doors for leaking protection, isolating outside noise and vibration reduction. Insert metal inserted to the weather strip plays a key role to keep the shape of the weather strip and increase its strength. Insert metal is mainly produced by a press process, which has low productivity and 40% material loss due to the scraps. To solve the problems, a high-speed rolling process for manufacturing the insert metal of weather strip is being attempted. In this study, the insert metal is manufactured by a high-speed rolling process, and its process variables: reduction, relative velocity of rollers and the number of passes, are optimized by using the FEA and the actual tests. The prototype was manufactured by the optimal process.
Effective elastic constants of bone-like biocomposites are investigated numerically. The bone-like materials are composed of strong layers and weak layers, and hierarchically structured. The unit cell model is employed to obtain the effective elastic constants. The effective anisotropic elastic constants of bone-like composites are obtained by using the potential energy method and finite element analysis. The effects of the Poisson’s ratio, elastic modulus, hierarchical level, volume fraction and aspect ratio of the strong layer composed of the composites on the effective elastic constants are discussed.
The light-weight design of UTM (Urban Transit Maglev)-02 car-body frames are performed, based on initial configuration. The thicknesses of fourteen sub-structures are defined as design variables and the loading condition is considered according to weight of sub-structures, electronic and pneumatic modules and passengers. For efficient and robust process of design optimization, objective function and constraints are approximated by response surface approximation. Structural analysis is performed at some sampling points to construct the approximated objective function and constraints composed of design variables. Design space is changed to find many optimal candidates and best optimal design can be found eventually. The Matlab Optimization Toolbox is used to find optimal value and sensitivity analysis about each design variable is also performed.
The design process for obtaining the reliable steeraxle casting beam of fork lift truck is studied in this paper, as the casting beam is major component of steeraxle which has a steering function at driving. In this study, the driving mode and damage pattern of casting beam which could be occurred from the customer site were analyzed and it established the design process to predict the fatigue life by FEA(Finite Element Analysis) so that the reliability of steeraxle casting beam could be verified at DVT(Design Validation Test) mode. This paper provides guidance on the process of designing the reliable steeraxle casting beam at the initial design stage and also, provides guidance on the process of solving the problem when the failure is occurred in the field.
Most of the mechanical structures use bolting or spot welding for the whole structure. In recent years, bolting & rivets are used rather than the welding due to reassembly and repair. Analysis of bolted joints is so complicate that many conditions must be considered such as pre-load and contact, etc.. Bolted joint analysis is done by theoretical, experimental & numerical methods. However, numerical analysis in the bolted joint is used because the contact and stress in the joints are changed due to the pre-load. In this study, we analysis the slip and the deformation of the contact area in the joint depending on the pre-load and find the optimized bolting condition.
The purpose of study was to analyze how the visual information affects balance control of individuals during single leg stance. A total of 27 young normal people (20 males and 7 females, age: 13.7±2.6, height: 162.3±13.2 cm, weight: 53.9±13.9 kg) was voluntarily involved in the experiment. The subjects were requested to maintain balance for 20 seconds with eyes both open and closed on a force plate and then foot ground reaction data were collected for that duration. Results showed that mean velocity of COP in closed eyes condition was larger 1.84 times than that of the open-eyes condition and range of vertical angle was increased approximately one degree in the closed eyes condition. To accomplish a balance, the frequency power in mediolateral and anteroposterior components of the foot-ground reaction force was increased by 1.3~1.4 times. Consequently, visual absence during single leg stance can result in critical loss of balance and lead to instability of body control.
Social activities of the elderly have been increasing as our society progresses toward an aging society. As their activities increase, so does the occurrence of falls that could lead to fractures. Falls are serious health hazards to the elderly. Therefore, development of a device that can detect fall accidents and prevent fracture is essential. In this study, we developed a portable fall detection system for the fracture prevention system of the elderly. The device is intended to detect a fall and activate a second device such as an air bag deployment system that can prevent fracture. The fall detection device contains a 3-axis acceleration sensor and two 2-axis tilt sensors. We measured acceleration and tilt angle of body during fall and activities of daily(ADL) living using the fall detection device that is attached on the subjects'. Moving mattress which is actuated by a pneumatic system was used in fall experiments and it could provide forced falls. Sensor data during fall and ADL were sent to computer and filtered with low-pass filter. The developed fall detection device was successful in detecting a fall about 0.1 second before a severe impact to occur and detecting the direction of the fall to provide enough time and information for the fracture preventive device to be activated. The fall detection device was also able to differentiate fall from ADL such as walking, sitting down, standing up, lying down, and running.