The long neck flange is used to connect piping arrangements where the lap joint is applied. Generally, the component can be manufactured by welding, but this method is both time and cost intensive. Embrittlement at the heat affected zones was also considered. A spinning method developed to improve the manufacturing process and solve the problems of welding. The flange area of the long neck flange can be formed by changing the direction of the metal flow, from axial to radial, while maintaining pressure by using an outer mold and a lap roller. A modified process was additionally developed using a round roller rather than the outer mold. In this modification, the round roller can form the shape of all sizes of long neck flange. Using these flexible methodologies, the cost to prepare outer molds and the time to install and remove the molds can be significantly reduced.
Recently, the change of mechanical properties and microstructural evolution during severe plastic deformation (SPD), such as Equal Channel Angular Extrusion (ECAE), has been the subject of intensive investigation because of the unique physical and mechanical properties of severely deformed materials. In this study, two types of ECAE processes were considered, dies with intersection angles Φ of 90° and 120°, using experiments and simulations. The decoupled method, in which the rigid-plastic finite element method is incorporated with the rate-independent crystal plasticity model, was applied to predict the texture evolution in commercially pure aluminum during the ECAE processes with 120° and 90° dies. The simulated textures were compared with a measured texture via an EBSD OIM analysis. The comparison showed that the simulated textures generally were in good agreement with the experimentally measured texture.
In drawing sheet metal, the blank holding force is applied to prevent wrinkling of the product and to add a tensile stress to the material for the plastic deformation. Applying an inappropriate blank holding force can cause wrinkling or fracture. Therefore, it is important to determine the appropriate blank holding force. Recent developments of the servo cushion open up the possibility to reduce the possibility of fracture and wrinkling by controlling the blank holding force along the stroke. In this study, a method is presented to find the optimal variable blank holding force curve, which uses statistical analysis with consideration of the nonlinear deformation path. The optimal blank holding force curve was numerically and experimentally applied to door inner parts. Consequently, it was shown that the application of the variable blank holding force curve to door inner parts could effectively reduce the possibility of fracture and wrinkling.
The thermoforming process has been widely used to manufacture medium- and large-sized plastic parts because of the relatively low cost and high productivity, as compared with other plastic forming processes. One of current salient issues of thermoforming industries is the reduction of trial and error during the production of the thermoformed product. Hence, there is a significant increasing interest in the thermoforming analysis by the thermoforming industries. The goal of this paper is to investigate a methodology of the three-dimensional thermoforming analysis for medium- and large-sized plastic parts. There is a discussion about methodologies of thermoforming analysis, as well as material modeling, and three-dimensional finite element analysis. Furthermore, there is an examination, through case studies, about the applicability of the proposed methodology concerning the thermoforming analysis.
This study aims to develop an efficient mold structure for the injection molding of a subminiature lens, using shell-type runners instead of traditional cylindrical runners. While the shell runner has the advantage of shorter cooling time due to its thinner geometry, this smaller thickness causes an increase in injection pressure. In this study, the design of the shell runner was modified to contain multiple holes for the purpose of reducing injection pressure. Numerical analyses were performed for shell runners of various hole-shapes, and the resulting filling and cooling characteristics were discussed; the rhombic hole showed the best result for both filling and cooling characteristics. Subsequently, injection molding experiments were performed using an injection mold fabricated based on the rhombic design. The lens parts were successfully molded with highly-reduced cycle time and without degradation of part quality.
In the present study, a numerical investigation of an insert injection molding process was carried out for the development of thermoplastic microfluidic chip plates with metal electrodes. Insert injection molding technology enables efficient realization of a plastic-metal hybrid structure and various efforts have been undertaken to produce novel components in several application fields. The microfluidic chip with metal inserts was proposed as a representative example and its molding process was analyzed. The important characteristics of the filling stage, such as the effects of filling time and thickness of the part cavity, were characterized. Furthermore, the detailed distributions of pressure and temperature at the end of the filling stage were investigated, revealing the significance of metal insert temperature.
This study uses finite element analysis to evaluate the forming load of tool entrance angle of the cold forward extrusion molding process of helical gear; this can replace the spur gear applied to the Electronic Parking Brake (EPB) system. A cold forging process is often used in the automobile industry as well as in various industrial machines due to its high efficiency. Finite element analysis is frequently used when interpreting results of the forging process. Formality was evaluated by calculating tooth profile filling rate of helical gear. Change in required forming load was investigated when the entrance angle of forward extrusion tool die was changed from 30° to 60°, also by finite element analysis. We suggest suitable tool entrance angles.
This paper details a new ultra-precise turning method for increasing surface quality, “Multi Point B Axis Control Method.” Machined surface error is minimized by the compensation machining process, but the process leaves residual chip marks and surface roughness. This phenomenon is unavoidable in the diamond turning process using existing machining methods. However, Multi Point B axis control uses a small angle (<1 °) for the unused diamond edge for generation of ultra-fine surfaces; no machining chipping occurs. It is achieved by compensated surface profiling via alignment of the tool radial center on the center of the B axis rotation table. Experimental results show that a diamond turned surface using the Multi Point B axis control method achieved P-V 0.1 μm and Ra 1.1nm and these ultra-fine surface qualities are reproducible.
In the literature, various stochastic anomaly detection methods, such as limit checking and PCAbased approaches, have been applied to weld defect detection. However, it is still a challenge to identify meaningful defect patterns from very limited sensor signals of laser welding, characterized by intermittent, discontinuous, very short, and non-stationary random signals. In order to effectively analyze the physical characteristics of laser weld signals: plasma intensity, weld pool temperature, and back reflection, we first transform the raw data of laser weld signals into the form of event logs. This is done by multidimensional discretization and event-codification, after which the event logs are decoded to extract weld defect patterns by Naive Bayes classifier. The performance of the proposed method is examined in comparison with the commercial solution of PRECITEC’s LWMTM and the most recent PCA-based detection method. The results show higher performance of the proposed method in terms of sensitivity (1.00) and specificity (0.98).
In this study, modal analysis and equivalent static load analysis for valve supports of 26" gas piping in gas stations were conducted and the existing straight and inclined types of valve supports were compared using seismic performance testing. Also, a new valve support shape was suggested by optimizing position of fastener holes, width and thickness of the support, and size of bracket. Improvement in seismic performance by design optimization was verified through equivalent static load analysis. The seismic performance of the newly proposed valve support was greatly improved and the maximum displacement and maximum stress of the seismic load was about 20% lower than those of the existing valve support.