The International System of Units (acronym: SI) is founded on seven base units (meter, kilogram, second, ampere, kelvin, mole, and candela) corresponding to seven base quantities (length, mass, time, electric current, thermodynamic temperature, amount of substance, and luminous intensity). SI was formally established in 1960 by the 11th CGPM. It has been revised from time to time in response to requirements of users and advances in science and technology. However, the most significant revision is going to be done in November 2018 by the 26th CGPM. Four base units (kilogram, ampere, kelvin, and mole) will be given new definitions linking them to exactly defined values of Planck constant, elementary charge, Boltzmann constant, and Avogadro constant, respectively. In this paper, historical background for the revision of SI is described and scientific principle of redefinition is explained. The procedure used to redefine meter from the speed of light in a vacuum is used as an example. After this revision, uncertainties of many other fundamental constants will be eliminated or reduced. From May 20, 2019 (World Metrology Day), the revised SI will come to practice.
Citations
Citations to this article as recorded by
Time and Its Measure: Historical and Social Implications Paolo Vigo, Andrea Frattolillo Metrology.2023; 3(3): 294. CrossRef
Strategy Direction of the Quality Assurance System of Metrology according to the Change of Sensor and Measurement Technology Wan-Ho Cho, Sung Jung Joo, Hyung Kew Lee Journal of the Korean Society for Precision Engineering.2021; 38(12): 917. CrossRef
In the current SI (International System of Units), the kilogram is defined by the mass of a material artefact. In this instance, because the artefact can be damaged during use, the present definition is inherently considered unstable. To overcome the shortcomings of the present kilogram definition, the SI will be redefined in near future. In the new SI, the kilogram will be redefined by fixing the numerical value of the Planck constant. After the kilogram redefinition, realization experiments which link the Planck constant to the mass will be necessary. In the new SI, the kilogram will be realized through experiments including the Kibble balance and the X-ray crystal density. The Kibble balance, which is named for the scientist Bryan P. Kibble, is an electromechanical device comparing mechanical power and electrical power. The electrical power is proportional to the Planck constant, because of the voltage and resistance are measured using the Josephson effect and the quantum Hall effect, respectively. The Planck constant is an invariant and not a characteristic of a man-made object, or a specific experiment. The new mass unit is more stable than the current one, and will pave the way for the advancement of precision measurement.
It is often overlooked that so far, there has been inconsistency between the definition of the ampere in SI units and its realization. For instance, the ampere is defined based on the classical Ampere’s law, while its representation has been made through the Ohm’s law, that is, the ratio of the Josephson voltage to the quantum Hall resistance that do not belong to the SI units. However, in the revised SI units that are slated to take effect in 2019 on World Metrology Day, 20 th of May, it is significant to note that the ampere will be defined as a flow of electrons with the numerical value of the elementary charge fixed. In this instance, all three of the electrical units, such as the current, voltage and resistance will become defined on the basis of quantum physics. As a candidate for the quantum current standard, the various types of single electron pump devices are reviewed in relation to the redefinition of the ampere.
The unit of the thermodynamic temperatures, kelvin, will be redefined after May of 2019, by the new process of fixing the numerical value of the Boltzmann constant. In this respect, the Boltzmann constant, which is a conversion factor between the thermal energy and the thermodynamic temperature, will be assigned as 1.380 649 × 10-23 J K-1 after the redefinition procedure. This paper reviews the three experiments which have contributed to the determination of the Boltzmann constant, which are namely: the acoustic gas thermometry, dielectric constant gas thermometry and the noise thermometry. By and large, the physical principles of these experiments are important even after the redefinition takes place, because they are methods used as primary thermometers for the determination of the thermodynamic temperatures. The status of the redefinition and the relation between the thermodynamic temperature and temperature scale is reviewed in this paper.
Citations
Citations to this article as recorded by
Measurement of triple point of water temperature for improvement of the national standards and key comparison Inseok Yang, Young Hee Lee JOURNAL OF SENSOR SCIENCE AND TECHNOLOGY.2021; 30(5): 349. CrossRef
The mole, symbol mol, is the International System of Units (SI) unit of the amount of substance which is the quantity referring to a measure of the number of specified elementary entities, such as chemical elements or compounds in a sample. In the current SI, the mole is defined by specifying the mass of carbon-12. But this base unit is not an invariant of nature because the mass is defined by the material artefact. According to efforts to define the base units in SI using true invariants of nature, the mole will be redefined by fixing the numerical value of a fundamental constant, the Avogadro constant. In the new SI, the definition of the mole can be realized through the experiments that lead to the determination of the Avogadro constant. The best experimental value of the Avogadro constant has been obtained by the X-ray crystal density experiment using silicon-28 highly enriched silicon sphere in the frame work of the International Avogadro Coordination. In this paper, the current definition of the mole and practical aspects of this unit are introduced, then the principle and technical challenges in X-ray crystal density experiment for redefinition of the mole are discussed.
This paper presents a GPS-based method for outdoor robots to track humans. This new method can overcome the crucial problems of conventional techniques in complex environments with obstacles or sloped terrain that do not allow detecting the locations of humans out of the robot"s line of sight. The robot determines the position of the human with respect to GPS data and forms the trajectory of the human’s movement. This trajectory is then smoothed in real time to reduce sudden changes in the path and improve the tracking performance. We also propose an autonomous trajectory tracking method for the robot to avoid obstacles while effectively tracking the human trajectories. This method allows the robot to follow the human even in an environment with many robots and humans simultaneously present because the robot can always distinguish the human it should follow. The experiments demonstrate that robots can effectively follow the human while avoiding obstacles in complex environments.
Citations
Citations to this article as recorded by
Indoor Localization of a Mobile Robot based on Unscented Kalman Filter Using Sonar Sensors Soo Hee Seo, Jong Hwan Lim Journal of the Korean Society for Precision Engineering.2021; 38(4): 245. CrossRef
Extended Kalman Filter Based 3D Localization Method for Outdoor Mobile Robots Woo Seok Lee, Min Ho Choi, Jong Hwan Lim Journal of the Korean Society for Precision Engineering.2019; 36(9): 851. CrossRef
This paper presents a finite-time tracking control for a robot manipulator in the presence of a modeling uncertainty and an external disturbance. To solve the large chattering phenomenon that is caused by the high switching gain of the slidingmode control, a novel second-order sliding-mode controller that generates a continuous control input is designed with a robust differentiator. The finite-time stability of the closed-loop system is ensured using a constructive Lyapunov-stability analysis. Finally, a numerical simulation of the 2-Axis Pan-Tilt system is performed to verify the effectiveness of the proposed controller.
Due to the characteristics of domestic mountainous terrain, the tunnels are increasing. Therefore, an increased budget and more advanced equipment are required to maintain the tunnels cleanliness. As a study on shape optimization using the design of experiment, this paper assessed the design parameters affecting the maximum stress of an articulated hydraulic crane boom. As a result, the maximum stress of an optimized boom was 223.94 MPa at optimal factors. It showed an accuracy of 99.38% compared with the finite element analysis.
Citations
Citations to this article as recorded by
Optimal Design of 50 ton Hydraulic Breaker Housing Jai Hak Lee, Dong Ju Lee, Jun Young Choi Journal of the Korean Society for Precision Engineering.2022; 39(4): 269. CrossRef
In order to help design engineers to adopt the Geometric Dimensioning & Tolerancing (GD&T), this paper develops a stepby-step method for tolerance design based on the function of the product and its parts. The procedure of this method consists of (1) analysis of functions using Key Characteristics (KC) and Datum Flow Chain (DFC), (2) selection of datum features, and (3) the selection of geometric tolerance types based on the functions. The rules and guidelines for the two latter steps are given and explained in detail, in order that the design engineer can understand the reasons for the rules and use them effectively. The method presented in this paper differs from other previous work, as it is based on the functions, whereas we note that previous work typically focuses on the automation of the tolerancing task without due consideration of functions. The paper also illustrates the developed method through two case studies: an axle-wheel assembly model and a simplified refrigerator model. This geometric tolerance design method is not complete yet in the coverage of various tolerances, e.g. size tolerances and profile, but may assist the beginning design engineer developing a mastery over GD&T.
Citations
Citations to this article as recorded by
An Advanced Prediction Technology of Assembly Tolerance for Vehicle Door Nam-Yeoung Jeoung, Jin-Hyung Cho, Hyun-Seung Oh, Sae Jae Lee Journal of Society of Korea Industrial and Systems Engineering.2018; 41(4): 91. CrossRef
Rotary tables are often used to fix and support work-pieces in machine tools. Because the deformation of the rotary table is known to significantly affect the precision in the work of the machine tool, it is very important to accurately predict the static displacements of the rotary table subjected to internal and external loads. This paper deals with modeling and experimental verification of the static displacements of a large-size rotary table supported by a thrust cylindrical roller bearing (T-CRB) and a double row cylindrical roller bearing (D-CRB). To this end, a rotary table model was developed along with the quasi-static models for T-CRB and D-CRB. The equilibrium equation of the rotary table was derived, and solved one by one in the looping manner, to overcome its statically indeterminate characteristics. The proposed modeling method was verified by means of comparing to the experimental results. Finally, an extensive simulation was carried out to investigate the deflection of the rotary table subjected to cutting forces.
Citations
Citations to this article as recorded by
Absolute Inductive Angular Displacement Sensor for Position Detection of YRT Turntable Bearing Yangyang Wang, Yi Qin, Xihou Chen, Qifu Tang, Tianheng Zhang, Liang Wu IEEE Transactions on Industrial Electronics.2022; 69(10): 10644. CrossRef
Study on the Guide Rail Deformation in Linear Roller Bearings Subjected to External Loading Jun-Ho Heo, Sun-Woong Kwon, Seong-Wook Hong Journal of the Korean Society for Precision Engineering.2019; 36(1): 79. CrossRef
The applicability of flexible OLED devices has been expanding to rollable or foldable displays and lighting. At this time, a system to measure the durability of flexible OLEDs needs to be developed to successfully launch flexible OLEDs in future electronic devices. In this paper, we develop a bending lifetime tester to measure the performance of flexible OLEDs by measuring the luminance of the device in real-time during the bending test. A fixed distance between the bent OLEDs and detector during the bending test improves the accuracy of the measured brightness in real time. This bending tester can measure the lifetime of flexible OLEDs with a mean deviation of less than 0.23% over a temperature range of -30 to 80℃. This performance is sufficient to measure the accelerated lifetime test of flexible OLEDs for reliability engineering.
A study of super-hydrophobic surface originated from the analysis of lotus leaf in the nature and fabrication method of super-hydrophobic surface on copper substrate has been researched for, showed functional surfaces with anti-corrosion. However, since copper nanowires decomposed during thiol coating, it is necessary to reseach on the relation with morphology of copper nanowires and thiol coating time. In this study, the research is all about the effect of thiol coating time on wettability of copper nanowires surface. Copper hydroxide nanowires were made up by oxidation using dipping method and a polymer layer was formed on nanowires using thiol coating. Surface characteristics were assessed using scanning electron microscopy and liquid contact angles. The conclusion showed relation for wettability of thiol coated copper hydroxide nanowires with thiol coating time and proposed method would be favorable for anti-corrosion functional surface.
We have designed the structural shapes of a spiral blade and the frame to be used in an Archimedes wind-power system with the objective of increasing its mechanical strength. A conical roll-bending forming process was introduced to fabricate a metallic spiral blade, based on an incremental stepwise approach. From this process, the complicated spiral blade was constructed, and it could be applied to the wind-power mill. We proposed a few structural design concepts for improvement of the mechanical strength of the blade and frame. Fixing rods between the blades increased the natural frequency of the blades three-fold, compared to the original model with no rods. Also, the strength of the frame was increased by introducing edge-flanges with a height greater than 20 mm. This study will be helpful to industrial engineers interested in the structural design of a wind-power system in understanding the structural design process.