The aim of this study is to design the gearbox of an electric vehicle using the rear-wheel drive. The gearbox is a set of revolving gears and shafts based on programmed torque and rotations per minute (rpm). In this case, safety, strength and durability of gears and shafts was considered. In the narrow vehicle, a light case is used. In addition to gear safety and deflection, the weight of the vehicle was reduced. The electric vehicle reducer gearbox was modeled according to the vehicle room. The strength analysis was conducted using finite element method (FEM). After analyzing the strength using FEM to verify stress distribution, the design was modified, and compared with the results of altered design using FEM. As a result, the reducer gearbox of electric vehicle was designed according to incorporate gear safety, deflection of each gear, durability, and analysis of finite elements followed by test assessment, vehicle installation and the production of real parts.
Citations
Citations to this article as recorded by
Sensitivity Analysis on Driving Characteristics According to Change in Gear Ratio of a Front Wheel Drive Electric Vehicle Young-Kap Son, Jeong-Min Kim Journal of the Korean Society of Manufacturing Process Engineers.2022; 21(9): 50. CrossRef
A Study on the Optimum Design of Planetary Gear Train for Air-Starting Motor Nam-Yong Kim, Seong-Bae Park, Sung-Ki Lyu Journal of the Korean Society of Manufacturing Process Engineers.2022; 21(12): 135. CrossRef
Simulation and experimental study on lubrication of high-speed reducer of electric vehicle Fuchun Jia, Yulong Lei, Xianghuan Liu, Yao Fu, Jianlong Hu Industrial Lubrication and Tribology.2021; 73(3): 500. CrossRef
Study on the Reduction of Gear Whine Noise in Diesel Engine Gear Train Qi Zhang, Yong Bo Wang, Jian Hua Lv, Zhong Gang Zhu, Zhen Qin, Sung Ki Lyu Journal of the Korean Society for Precision Engineering.2019; 36(9): 867. CrossRef
A Study on the Optimal Design of Drive Gear for Transfer Gearbox MyeongJin Song, MyeongHo Kim, Zhen Qin, DongSeon Kim, NamSool Jeon, SungKi Lyu Journal of the Korean Society for Precision Engineering.2019; 36(2): 121. CrossRef
Injection molding is the most effective process for the mass production of plastic parts. However, there are various plastic part surface defects which occur during the injection molding process. Sink marks are among the most difficult surface defects to improve. The sink marks usually appear as depressions on the surface of a molded part. These depressions are typically very small; however, they are often quite visible because they reflect light in different directions to the part. In this paper, we conducted experimental studies in order to minimize sink marks that occurred on the in-mold type PAB door seam line by using the Mucell injection process. The results of the study indicate this method can be used to eliminate sink marks using the Mucell injection molding process.
With the advent of high-tech products, the need for ultra-precision machining has become increasingly necessary, along with the need for a jig center machining center capable of precision machining. A jig center maintains the accuracy of a jig borer, and also has an automatic tool changer like that of a machining center. It performs various machining functions in addition to hole machining and is the most precise and rigid machine tool. Various control methods and analytical techniques to improve machining accuracy are currently being developed in the field of ultra-precise large-scale machine tools. One relevant finding is that the degree of deformation varies depending on the weight of the machine tool as well as the ground conditions. It is therefore necessary to optimize ground conditions before installing the machine tools so as to improve the machining accuracy. The depth of concrete as well as the depth and diameter of grout were selected as variables. We developed the simulation case through structural analysis to consider the position of columns and tables. As a result of optimizing the foundation condition, it was found that the relative displacement error was reduced by up to 98% compared to the rigid foundation condition.
The role of dynamic behavior of operating rotor system in rotor design may or may not be evaluated under the impact of an external force such as earthquake. This article reports the result of an experimental study to resolve the dilemma. First, a sine weep test was performed to determine the first natural frequency of a Jeffcott rotor and compared with the ANSYS mode analysis demonstrating the reliability of experimental tests. The operating rotor vibrations were measured under the impact of sinusoidal forces at several frequencies, generated by the MTS vibration exciter. The experimental data suggest the need for a rotor design considering the dynamic behavior of the operating rotor under exciting external forces.
This paper is a study of the machining characteristics, cutting force and surface roughness of a turning center by laserassisted machining. The laser-assisted machining (LAM) is an effective method to improve the machinability of difficult-tocut materials. The LAM has recently been studied for various machining processes, but the research on the threedimensional and turning-center machining is still insufficient. In this study, a machining experiment of the turning-center process was performed by the laser-assisted machining with Inconel 718. Before the machining experiment, performed to thermal analysis was for a selected to effective depth of cut. The cutting force and surface roughness were compared and analyzed. The machining experiment confirmed that the machinability was improved in the LAM.
Citations
Citations to this article as recorded by
An Analytical Study on the Thermal-Structure Stability Evaluation of Mill-Turn Spindle with Curvic Coupling Choon-Man Lee, Ho-In Jeong Journal of the Korean Society of Manufacturing Process Engineers.2020; 19(1): 100. CrossRef
Recently, demands for difficult-to-cut materials with high mechanical properties have been increased in various industrial fields, such as the aerospace and automobile industries. Because difficult-to-cut materials have high mechanical properties, it is difficult to achieve conventional machining. Therefore, many researchers have been studying the machining methods for difficult-to-cut materials. One of the many studies of how to cut difficult-to-cut materials involves plasma-assisted machining (PAM) is a machining method that softens difficult-to-cut materials by a plasma heat source to remove by the cutting tool. PAM has various machining conditions, and it is very important to determine the optimal conditions to improve machining accuracy and efficiency. In this study, the cutting force was analyzed by using a gas flow rate and power which are the easiest to control in the PAM system. The results of this study can be applied to PAM data under optimum conditions.
Citations
Citations to this article as recorded by
A Study on Optimal Machining Conditions and Energy Efficiency in Plasma Assisted Machining of Ti-6Al-4V Young-Hun Lee, Choon-Man Lee Materials.2019; 12(16): 2590. CrossRef
In this paper, finite element modeling methods for cylindrical composite lattice structures were verified through natural frequency test. Finite element models for cylindrical composite lattice structure were developed using beam, shell and solid elements. Natural frequency test was measured using impact test method under free-boundary condition. The analysis result of the beam element model showed up to 23% errors because the beam element could not consider the degradation of mechanical properties of non-intersection parts of the composite lattice structures. On the other hand, the natural frequencies of finite element analysis for shell and solid element models showed good results with natural frequencies test. From the analysis of the experiment, finite element model for composite lattice structures should use shell or solid element which takes into consideration the intersection and non-intersection parts.
Recently, the use of stainless steels have been increased steadily as a sustainable structural material in infrastructures and thanks to its superior corrosion resistance, fire resistance and ductility compared with those of carbon steels. In this paper, block shear fracture behaviors in base metal of fillet-welded connection fabricated with austenitic stainless steel (STS304L) were investigated through monotonic tensile test. Main variables are weld lengths in the longitudinal and the transverse directions of applied force. Gas tungsten arc welding (GTAW) which is also known as tungsten inert gas (TIG) welding was chosen to join two metals. As a result, test specimens failed by typical block shear fracture (the combination of tensile fracture and shear-out fracture) in base steel. With the increase of two weld lengths, the ultimate strengths of specimens tended to get higher. Block shear fracture strengths predicted by current design specifications and existing proposed equations for welded connections were compared with those of test results. It is found that the discrepancy of strength prediction resulted from the effect of stress triaxiality on welded connections and the difference of material properties with carbon steel. Therefore, modified block shear fracture equation was suggested in this paper.
In the manufacture of mechanical components, volumetric errors of a machine tool should be checked and reduced to meet the required tolerance levels. In this paper, we propose a quick and simple method of measurement for checking and compensating geometric errors which include scaling and squareness errors. During the measurement, which usually takes approximately 5 minutes to complete, the machine tool is first commanded into four vertices sequentially on a virtual regular tetrahedron. Subsequently, the six lengths between four vertices are measured using a double ball-bar and geometric errors are calculated from the measured lengths. In order to verify the measurement result, the measured geometric errors are compensated using NC-code and the six lengths are re-measured to confirm the error correction. In conclusion, a double ball-bar circular test on XY-, YZ-, ZX-plane is done, first without compensation and then with the compensation of the measured geometric errors to check the effect of compensation practically.
Citations
Citations to this article as recorded by
Use of a Virtual Polyhedron for Interim Checking of the Volumetric and Geometric Errors of Machine Tools Kwang-Il Lee, Heung-Ki Jeon, Jae-Chang Lee, Seung-Han Yang International Journal of Precision Engineering and Manufacturing.2022; 23(10): 1133. CrossRef
Measurement of Location Errors in a Horizontal 4-axis Machine Tool using a Touch Trigger Probe Ji Hun Jeong, Gyungho Khim, Jeong Seok Oh, Sung-Chong Chung Journal of the Korean Society for Precision Engineering.2019; 36(8): 745. CrossRef
Super-wettability surface has various applications and actively studied in many fields. However water droplet transmissivity on super-wettability mesh was not be studied. This work is about water droplet transmissivity of an aluminum mesh with super-wettability on its surface. The mesh which fabricated surface structures with semi-permanent and non-etching process has super-wettability without strength drop of mesh structure. With this process, water droplet transmissivity was measured along various mesh pore per inch and dropping angle. Also water droplet transmissivity along dropping height was measure with super-hydrophobic mesh. As a result, super-hydrophilic mesh shows similar transmissivity behavior with bare mesh which has hydrophilic surface at high pore per inch and high dropping angle, super-hydrophobic 120 mesh shows lowest water droplet transmissivity in various situation.
This paper presents results for effects of the liquid surface tension on the ejected droplet volume using a pneumatic printing system. The low surface tension of the solution causes the liquid wetting around the nozzle, and then the wetted nozzle also inhibits stable formation of droplets. First, we confirmed the maximum inlet pressure (i.e., balanced with capillary force on the outlet channel) corresponding to varied surface tensions of the solutions, prepared by controlling the concentration of a surfactant. The ejected droplet volumes with the surfactant concentrations was varied within approximately 7% at each maximum inlet pressure, and the volume variation decreased to a fifth as compared with a high surface tension liquid.
This study investigates epoxy filling rate in the capillary underfill process of flip-chip packaging when the air is not trapped. Various design features were considered, they include; the shape of soldering bump, inlet size, bump height and bump spacing. The geometric models were made by CATIA and the analysis was carried out using commercial CFD software (Moldex3D capillary underfill packaging). In order to improve the usability of the analysis, the spherical bump shape was authenticated by the means of believe as a rhombic shape, and the analysis results were verified. The inlet size did not in any way whatsoever affect the underfill process analysis. From the analysis, we concluded that the epoxy of center parts needs to fill 80% or more of the inside of the edge in order to keep away from the air trapping on the flip-chip. This result can be a guideline for the underfill process conditions that may not be a reason for the air trap in the flip-chip design and manufacturing.