Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

9
results for

"몰"

Article category

Keywords

Publication year

Authors

"몰"

SPECIAL

Design and Evaluation of 3D Printed Molds for Engineered Muscle Fabrication
Hyun Ji Yang, Min Ju Choi, Yeong-Jin Choi
J. Korean Soc. Precis. Eng. 2025;42(9):689-694.
Published online September 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.082

Bioengineered skeletal muscle constructs that replicate the architectural, metabolic, and contractile characteristics of native tissue are becoming essential platforms for disease modeling and advancing regenerative medicine. The creation of these constructs relies heavily on cell-mediated gel compaction, a crucial process for facilitating tissue maturation. To ensure myotube alignment, muscle cell-laden hydrogels are typically embedded in 3D-printed molds with anchor structures. However, structural detachment or rupture often occurs during culture, which undermines the stability and functional differentiation of the engineered tissue. To address these challenges, we developed an improved anchor-type mold through a series of structural optimizations. We first compared two anchor geometries—linear and mushroom-shaped pillars—within rectangular frames, finding that the mushroom-shaped design provided better structural retention. However, the rectangular frames led to excessive gel compaction, causing detachment and disrupting cellular alignment, especially in central regions. To alleviate these issues, we introduced a dumbbell-shaped mold with a narrowed midsection to better distribute mechanical stress. This new mold effectively promoted aligned myotube formation, long-term construct maintenance, and functional maturation. Our findings underscore the benefits of structurally optimized molds in creating stable engineered muscle, with significant implications for regenerative therapies and preclinical testing platforms.

  • 71 View
  • 7 Download
Articles
Study on Reduction of Pyrolysis Shrinkage in the Carbonization of Furan Precursor by Addition of Vitreous Carbon Powder
Young Kyu Kim, Dong-in Hong, Hongmin Kim, Suho Ahn, Seok-Min Kim
J. Korean Soc. Precis. Eng. 2024;41(2):139-144.
Published online February 1, 2024
DOI: https://doi.org/10.7736/JKSPE.023.135
Vitreous carbon (VC) is an excellent material for glass molding due to its high hot hardness and low adhesion to glass materials. As a low-cost VC micro/nano mold fabrication method, carbonization of replicated Furan precursor has been investigated for various glass molded micro/nano optical and fluidic devices. One of the critical issues identified in the method is the substantial pyrolysis shrinkage (~22%) during the carbonization process. In this study, a method of minimizing pyrolysis shrinkage by adding VC powder to the initial Furan resin mixture was investigated. The mixing ratio of Furan resin, initiator, and ethanol was experimentally optimized for each VC powder mixing ratio, and the effects of the VC powder mixing ratio on the pyrolysis shrinkage of VC mold were examined. As the VC powder mixing ratio increased from 0% to 40%, we observed a reduction in the shrinkage ratio from 22.18% to 12.89% aligning closely with theoretical expectations.
  • 28 View
  • 0 Download
A Study on the Shape of Printed Circuit to Minimize Line-width Change by Film Thermoforming
Du Yong Park, Ho Sang Lee
J. Korean Soc. Precis. Eng. 2023;40(9):759-765.
Published online September 1, 2023
DOI: https://doi.org/10.7736/JKSPE.023.069
In-Mold Electronics (IME) is a manufacturing method that integrates printed decorations and electronic circuitry with thermoforming and injection molding processes. The method enables the production of ergonomic, lightweight and durable parts through cost-effective processes that require less assembly. Herein, the effect of circuit shape on line-width change by thermoforming was investigated through experiments and analysis based on the K-BKZ nonlinear viscoelastic model. Two circuit shapes, a horseshoe and a coil, were proposed and their line widths after thermoforming were measured and compared to that of a straight line shape. In the horseshoe-shaped circuit, the line width decreased as the radius increased due to the influence of vertical stretching caused by thermoforming. However, the effect of the angle on the line width was insignificant. In the coil-shaped circuit, the width of the line decreased as the pitch increased. However, as the amplitude increased, the line width also increased, but the effect was not significant. For the circuit shapes of the straight line, horseshoe and coil shapes, the rate of change in line width was 4.4, 0.4, and 0.2%, respectively. After conducting research, it was found that the coil-shaped circuit is more effective in minimizing line-width change caused by film thermoforming.
  • 24 View
  • 0 Download
Fabrication of Acoustophoretic Device with Lateral Polymer Wall for Micro-Particle Separation
Sungdong Kim, Su Jin Ji, Song-I Han, Arum Han, Young Hak Cho
J. Korean Soc. Precis. Eng. 2022;39(5):379-384.
Published online May 1, 2022
DOI: https://doi.org/10.7736/JKSPE.022.001
In this paper, we propose acoustophoretic microfluidic devices with an acoustic transparent polymer wall using a simple and low-cost fabrication method followed by MEMS (Micro-Electromechanical Systems) processes. Generally, due to the acoustic standing wave between two opposing walls in microfluidic channel, the particle focusing lines are fixed according to the applied frequency. In the proposed device, however, it is possible to place the particle focusing lines in the arbitrary position within the fluidic domain through the optimized width of polymer wall. The PDMS (Polydimethylsiloxane) mold with thin layer was used as the sealing layer between the Si substrate and cover glass, as well as the decoupling layer between the acoustic boundary and fluidic boundary. The thickness of PDMS mold needed to be minimized to decrease the heating by the acoustic energy absorption of PDMS layer, which was successfully made using the spin-coating of PDMS and the UV tape transfer method. The acoustophoretic device with thin PDMS layer and optimized width of PDMS wall can be applied, for biotechnological applications such as the separation of blood cells and micro-particles.
  • 25 View
  • 0 Download
A Case Study on Productivity Innovation through Convergence of Sand 3D Printing Technology
Kuk-Hyun Han, Jin-Wook Baek, Sang Yun Park, Tae Wan Lim, Ju Min Park
J. Korean Soc. Precis. Eng. 2021;38(9):651-657.
Published online September 1, 2021
DOI: https://doi.org/10.7736/JKSPE.021.073
Recently, competition in the manufacturing industry related to the preoccupation of new markets has drastically changed due to the increase in small quantity batch production products. Besides, business models utilizing 3D printing technology suitable for flexible manufacturing are gaining interest. As 3D printing technology is becoming more common, Design for Additive Manufacturing is also in the spotlight. However, the productivity of 3D printing technology is still insufficient in terms of mass production. In this study, the possibility of innovation in mass production process that combines 3D printing technology is presented through the case of innovation in manufacturing productivity of medium-speed engine cylinder head through the integration of sand 3D printing technology. It outlines how sand 3D printing technology is applied to cylinder head mass production processes, how the quality of cylinder head products can be improved compared to conventional pattern-based molding methods, and how productivity can be maximized by reducing process time and human error through hybrid production method with sand 3D printed integrated design cores. In conclusion, this paper presents the effectiveness of sand 3D printing technology which can secure product competitiveness by increasing the production capacity of mass production process, reducing production costs, improving quality, and reducing loss.

Citations

Citations to this article as recorded by  Crossref logo
  • Digital Transformation of Metal Casting Process Using Sand 3D Printing Technology with a Novel Methodology of Casting Design Inside a Core
    Kuk-Hyun Han, Jin-Wook Baek, Tae Wan Lim, Ju Min Park
    International Journal of Metalcasting.2023; 17(4): 2674.     CrossRef
  • 30 View
  • 0 Download
  • Crossref
Reliable Replication Molding Process for Robust Mushroom-Shaped Microstructures
Joon Hyung An, Ji Seong Choi, Seong Min Kang
J. Korean Soc. Precis. Eng. 2020;37(11):855-860.
Published online November 1, 2020
DOI: https://doi.org/10.7736/JKSPE.020.062
In this paper, we present a simple and robust fabrication method for mushroom-shaped microstructures using diverse polymers with various modulus of elasticity. Through the repeated replica molding process, we fabricated the same PDMS mushroom structure negative mold as the prepared silicon master mold. To evaluate the fabricating stability of the fabricated PDMS negative mold, the mushroom-shaped structures were replicated from the mold using six types of polymer resins with different elastic modulus and we measured superhydrophobic properties on the samples. All the fabricated samples exhibited superhydrophobicity, and we proved the structural stability of the proposed replication method through the measured SEM images, contact angles on the samples, and theoretical analysis based on the structural shape.

Citations

Citations to this article as recorded by  Crossref logo
  • Mastering of NIL Stamps with Undercut T-Shaped Features from Single Layer to Multilayer Stamps
    Philipp Taus, Adrian Prinz, Heinz D. Wanzenboeck, Patrick Schuller, Anton Tsenov, Markus Schinnerl, Mostafa M. Shawrav, Michael Haslinger, Michael Muehlberger
    Nanomaterials.2021; 11(4): 956.     CrossRef
  • 32 View
  • 0 Download
  • Crossref
Fabrication of Anisotropically Oleophobic Surface with Inverse-Tapered Structure Using Micromolding in Capillaries and Microtransfer Molding
Ki Yeon Hong, Dong-Ki Lee, Sungdong Kim, Young Hak Cho
J. Korean Soc. Precis. Eng. 2019;36(4):413-418.
Published online April 1, 2019
DOI: https://doi.org/10.7736/KSPE.2019.36.4.413
Fabrication of inverse-tapered structure remains as a problem in the fabrication of oleophobic surface mostly due to the complications and the high cost of processes. In this paper, we propose a simple and low-cost fabrication method of inverse-tapered structured oleophobic surface using micromolding in capillaries (MIMIC) and microtransfer molding followed by MEMS processes. Silicon wafer molds for the formation of inverse-tapered structure were made using MEMS processes such as photolithography and anisotropic KOH etching of silicon wafer. The geometry of structure could be changed by controlling the etching depth of the silicon wafer mold. After covering the surface of the mold using flat UV tape, the formed space between mold and UV tape was filled with pre-cured PDMS by capillary force and then cured in oven. The tapered structure on UV tape was transferred and bonded to glass wafer by O₂ plasma treatment. The fabricated inverse-tapered structure was coated with a fluoroalkylsilane monolayer to reduce its surface energy. The wetting behaviors were investigated by the contact angle (CA) measurement of hexadecane droplets. This study demonstrates that an inversetapered structure can be fabricated on a substrate using micromolding in capillaries and microtransfer molding, whose surface shows the superoleophobicity.

Citations

Citations to this article as recorded by  Crossref logo
  • Fabrication of Acoustophoretic Device with Lateral Polymer Wall for Micro-Particle Separation
    Sungdong Kim, Su Jin Ji, Song-I Han, Arum Han, Young Hak Cho
    Journal of the Korean Society for Precision Engineering.2022; 39(5): 379.     CrossRef
  • Fabrication of anisotropic wetting surface with asymmetric structures using geometrical similarity and capillary force
    Ye-Eun Lee, Dong-Ki Lee, Young Hak Cho
    Micro and Nano Systems Letters.2019;[Epub]     CrossRef
  • 44 View
  • 0 Download
  • Crossref
The mole, symbol mol, is the International System of Units (SI) unit of the amount of substance which is the quantity referring to a measure of the number of specified elementary entities, such as chemical elements or compounds in a sample. In the current SI, the mole is defined by specifying the mass of carbon-12. But this base unit is not an invariant of nature because the mass is defined by the material artefact. According to efforts to define the base units in SI using true invariants of nature, the mole will be redefined by fixing the numerical value of a fundamental constant, the Avogadro constant. In the new SI, the definition of the mole can be realized through the experiments that lead to the determination of the Avogadro constant. The best experimental value of the Avogadro constant has been obtained by the X-ray crystal density experiment using silicon-28 highly enriched silicon sphere in the frame work of the International Avogadro Coordination. In this paper, the current definition of the mole and practical aspects of this unit are introduced, then the principle and technical challenges in X-ray crystal density experiment for redefinition of the mole are discussed.
  • 42 View
  • 1 Download
An Evaluation of Wear in High Load Long Pitch Roller Chain
Chang Uk Kim, Jang-Young Chung, Jung Il Song
J. Korean Soc. Precis. Eng. 2017;34(9):647-651.
Published online September 1, 2017
DOI: https://doi.org/10.7736/KSPE.2017.34.9.647
The present research investigates the wear analysis on SCM440 and SUS410 alloys for a high- load roller chain. In this wear analysis test, we concentrate on two wear factors: wear loss and coefficient of friction. For the wear test, reciprocating and block on ling analyses were used to assess the variation of wear characteristics. The applied normal loads were fixed at 10, 30, and 50 N in all tests. The test results showed that the Rockwell hardness average value of the SCM440 alloy is near 29.6 HRC, and the coefficient of friction and the wear loss are 0.62 and 3.8 mg, respectively. In addition, wear behavior was evaluated using lubricating oil.

Citations

Citations to this article as recorded by  Crossref logo
  • Study on Improvement of Catheter Tip Forming Process according to Plating Characteristics in Mold
    Han Chang Lee, Jinhyuk Jung, Gyu Ik Lee, Woojin Kim, Gyu Man Kim, Bong Gu Lee
    Journal of the Korean Society for Precision Engineering.2022; 39(9): 711.     CrossRef
  • 30 View
  • 0 Download
  • Crossref