Microphysiological systems (MPS) are advanced platforms that mimic the functions of human tissues and organs, aiding in drug development and disease modeling. Traditional MPS fabrication mainly depends on silicon-based microfabrication techniques, which are complex, time-consuming, and costly. In contrast, 3D printing technologies have emerged as a promising alternative, allowing for the rapid and precise creation of intricate three-dimensional structures, thereby opening new avenues for MPS research. This review examines the principles, characteristics, advantages, and limitations of key 3D printing techniques, including fused deposition modeling (FDM), stereolithography (SLA)/digital light processing (DLP), inkjet 3D printing, extrusion-based bioprinting, and laser-assisted bioprinting. Additionally, we discuss how these technologies are applied in MPS fabrication and their impact on MPS research, along with future prospects for advancements in the field.
Citations
Citations
Citations