Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

2
results for

"생성적 적대 신경망"

Article category

Keywords

Publication year

Authors

"생성적 적대 신경망"

Articles
Prediction of Steel Plate Deformation in Line Heating Process Using Conditional Generative Adversarial Network (cGAN)
Young Soo Yang, Kang Yul Bae
J. Korean Soc. Precis. Eng. 2025;42(6):411-420.
Published online June 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.010
This study proposed a conditional generative adversarial network (cGAN) model for predicting steel plate deformation based on heating line positions in a line heating process. A database was constructed by performing finite element analysis (FEA) to establish relationships between heating line positions and deformation shapes. Deformation shapes were converted into color map images. Heating line positions were used as conditional labels for training and validating the proposed model.
During the training process, generator and discriminator loss values, along with MSE and R² metrics, converged stably, demonstrating that generated images closely resembled the actual data. Validation results showed that predicted deformation magnitudes had an average relative error of approximately 3% and a maximum error of less than 7%. These findings confirm that the proposed model can effectively predict steel plate deformation shapes based on heating line positions in the line heating process, making it a reliable predictive tool for this application.
  • 17 View
  • 7 Download
Data Augmentation based on Deep Learning for Object Detection of Infrared Cameras in Extreme Environments
Jinwoo Cho, Ji-Il Park, Hyunyong Jeon, Jihyuk Park, Kyung-Soo Kim
J. Korean Soc. Precis. Eng. 2022;39(6):387-394.
Published online June 1, 2022
DOI: https://doi.org/10.7736/JKSPE.022.026
Recently, in-depth studies on sensors of autonomous vehicles have been conducted. In particular, the trend to pursue only camera-based autonomous driving is progressing. Studies on object detection using IR (Infrared) cameras is essential in overcoming the limitations of the VIS (Visible) camera environment. Deep learning-based object detection technology requires sufficient data, and data augmentation can make the object detection network more robust and improve performance. In this paper, a method to increase the performance of object detection by generating and learning a high-resolution image of an infrared dataset, based on a data augmentation method based on a Generative Adversarial Network (GAN) was studied. We collected data from VIS and IR cameras under severe conditions such as snowfall, fog, and heavy rain. The infrared data images from KAIST were used for data learning and verification. We confirmed that the proposed data augmentation method improved the object detection performance, by applying generated dataset to various object detection networks. Based on the study results, we plan on developing object detection technology using only cameras, by creating IR datasets from numerous VIS camera data to be secured in the future and fusion with VIS cameras.
  • 6 View
  • 0 Download