Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

2
results for

"신축성"

Article category

Keywords

Publication year

Authors

"신축성"

SPECIAL

Emerging Patterning Strategies for Intrinsically Stretchable Conductors: Materials, Architectures, and Device-level Performance
Donghyeon Seo, Seongsik Jeong, Hae-Jin Kim
J. Korean Soc. Precis. Eng. 2025;42(10):789-816.
Published online October 1, 2025
DOI: https://doi.org/10.7736/JKSPE.D.25.00003

Intrinsically stretchable electronics enable seamless integration with dynamic biological tissues and curved surfaces, making them vital for next-generation wearables, biointerfaces, and intelligent robotics. Yet, precise, high-resolution patterning of stretchable electrodes and circuits remains challenging, limiting practical applications. Traditional lithography offers excellent resolution but is hindered by thermal and chemical incompatibilities with soft substrates. Consequently, alternative approaches such as soft lithography, laser-based patterning, printing methods, and electrospray deposition have gained importance. Soft lithography provides an economical, low-temperature option suitable for delicate materials like liquid metals. Laser-based techniques deliver high resolution and design flexibility but require careful parameter tuning for specific substrates. Mask-free printing methods, including direct ink writing and inkjet printing, enable versatile patterning of complex geometries, while electrospray deposition supports precise, non-contact patterning on stretchable surfaces. Collectively, these techniques advance the fabrication of robust stretchable displays, wireless antennas, and bioelectronic interfaces for accurate physiological monitoring. Despite progress, challenges persist, particularly in achieving large-area uniformity, multilayer stability, and sustainable processing. Addressing these issues demands interdisciplinary collaboration across materials science, fluid dynamics, interfacial engineering, and digital manufacturing. This review highlights recent progress and remaining hurdles, offering guidance for future research in stretchable electronics.

  • 44 View
  • 3 Download
Article
Structural Analysis of Thin Film with Applied Pre-Strain in Substrate
Jung Yup Kim, Sunghwan Chang, Ah-Young Park, Yun Hwangbo, Jun Yeob Song
J. Korean Soc. Precis. Eng. 2023;40(2):175-184.
Published online February 1, 2023
DOI: https://doi.org/10.7736/JKSPE.022.105
Stretchability enables the device to be patched to a curved surface or to be folded several times to maximize usability. Among many methods, the pre-strain method is advantageous in that the stretchability as much as the pre-strain applied to the substrate is guaranteed even without material improvement. When the pre-strain is restored to its original state, the thin film gets wrinkled or the substrate gets buckled. Wrinkles and buckling that appear in this way are affected by the physical properties and dimensions of the substrate, and it is necessary to analyze their effect. In this study, a theoretical approach was used and a nonlinear post-buckling analysis was performed using a finite element method. The analysis was divided into two steps: the pre-strain step and the recovery step. According to the analysis results, it was possible to predict and analyze the wrinkle and buckling behavior due to pre-strain according to the physical properties and dimensions of the substrate. The pre-strain analysis method can be applied to multi-layer structures with three or more layers and can be used as a method to analyze wrinkle suppression and wrinkle shape control in future studies.
  • 52 View
  • 1 Download