It is difficult for a human operator to find roll, pitch, yaw (RPY) that indicates the desired direction of unmanned aerial vehicle (UAV) in a three-dimensional space. Herein, a controller for UAV was developed allowing the human operator controlling the direction of UAV without finding RPY information. The algorithm implemented in the controller automatically calculated RPY information of UAV from the normal vector of the end effector. The developed controller was designed using a parallel mechanism. The joint angles of the controller were measured using potentiometers to estimate the normal vector of the end effector. Five subjects participated in an experiment to control a vector in three-dimensional space to follow a randomly generated target vector using the developed controller and the thumb sticks. The performance of the two controllers was evaluated by two methods: measuring the required time to reduce the error between the controlled vector and the target vector to be less than 0.1 cm and calculating a normalized error between the controlled vector and the target vector after manipulating the controlled vector for 10 seconds. When using the developed controller, the difference in control ability between subjects was reduced, and both required time and normalized error were generally reduced.
This paper proposes an integrated control system for multi-disaster response robots based on Robot Operating System (ROS). The contributions of this paper were as follows: 1) A multi-score-based system concept was proposed in consideration of network instability issues which might frequently occur in compound disaster environments; 2) A detailed ROS based software structure was implemented to apply the proposed system to real robots; 3) Hardware cockpit and graphical user interface (GUI) for an operator were implemented; 4) through the experiment, the problem of the system based on common ROS structure, the out-of-control state, was confirmed and we verified the proposed system using the scenario.