Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

5
results for

"접착"

Article category

Keywords

Publication year

Authors

"접착"

SPECIAL

Mass-producible Stepwise Thermal Patterning for Bio-inspired Dry Adhesives
Han Jun Park, Minsu Kim, Songyoung Lee, Moon Kyu Kwak
J. Korean Soc. Precis. Eng. 2025;42(10):833-841.
Published online October 1, 2025
DOI: https://doi.org/10.7736/JKSPE.D.25.00008

Dry adhesives inspired by gecko footpads have garnered considerable attention due to their unique features, including strong yet reversible adhesion, self-cleaning properties, and repeatable use. However, scaling these microstructured adhesives from laboratory fabrication to continuous, high-throughput manufacturing poses significant challenges. In this study, we introduce a stepwise thermal patterning system designed for the scalable production of gecko-inspired dry adhesives on flexible substrates. This automated system combines sequential processes such as plate-to-plate micro-molding, rapid thermal curing, demolding, and roll-up of the patterned film. By raising the curing temperature to approximately 180oC and employing an efficient stepwise imprinting method, we achieve fabrication speeds of up to 150 mm/min without compromising pattern accuracy. The system successfully replicates micropillar structures with a diameter of 15 μm and height of 15 μm, featuring 20 μm mushroom-shaped tips on flexible substrates. The resulting dry adhesives demonstrate stable pull-off strengths of 20-23 N/cm² and retain over 83.5% of their initial adhesion after 100,000 attachment–detachment cycles. These findings highlight the potential of our platform for reliable, high-throughput manufacturing of bio-inspired adhesives, paving the way for various industrial applications such as robotic manipulators, pick-and-place electronic assembly, and wearable devices that require repeated, residue-free attachment.

  • 8 View
  • 1 Download
Articles
Study on Improvement of Catheter Tip Forming Process according to Plating Characteristics in Mold
Han Chang Lee, Jinhyuk Jung, Gyu Ik Lee, Woojin Kim, Gyu Man Kim, Bong Gu Lee
J. Korean Soc. Precis. Eng. 2022;39(9):711-721.
Published online September 1, 2022
DOI: https://doi.org/10.7736/JKSPE.022.065
Catheter tip forming is processing the tip at the distal end so that catheter can move smoothly through the geometrically complex vascular structure. This thermoforming process has a problem in that the polymer tube adheres to the outer surface of the mold. To resolve this problem, previous researchers have coated the outer surface of the mold with PTFE (Polytetrafluoroethylene), which has a low coefficient of friction. However, due to repeated use, the coating is detached and the polymer tube adheres to the mandrels again, and the mold is frequently replaced. Thus, in this study, three types of metal were electroplated on the surface of the mold in to realize the performance of the PTFE coating. To select the optimal plating material, Cr, Zn, and Ni were selected as candidate groups. Surface energy, adhesion force, and abrasion depth & volume were measured for performance comparison. As a result, Ni, which has similar surface properties to PTFE, and the best durability, was selected as the optimal material. Based on these results, we present Ni-plated mold that can replace PTFE.
  • 5 View
  • 0 Download
A Study on the Improvement of Bonding Strength of Heterojunctions by Applying Laser Surface Treatment to Carbon Fiber Reinforced Plastics
Huan Wang, Seong Cheol Woo, Chung-Ki Sim, Seong-Kyun Cheong, Joohan Kim
J. Korean Soc. Precis. Eng. 2022;39(9):683-689.
Published online September 1, 2022
DOI: https://doi.org/10.7736/JKSPE.022.063
The adhesive bonding technology of carbon fiber reinforced plastics (CFRP) and aluminum alloys, is one of the lightweight joining technologies for automobiles. The strength and properties of the bonded joint, depend on the surface of the bonded part that the adhesive touches. Thus, proper surface treatment is one of the most important steps in the bonding process. The laser surface treatment of carbon fiber composites is a new form of green and environmental surface treatment technology, which can effectively clean coatings and pollutants on the surface of materials. It is also possible to improve the bonding shear strength, by changing the microstructure and roughness of the material surface through laser micro texture processing, to form a mechanically interlocked structure. In this study, a pulsed laser was used to treat the surface of CFRP. By changing the scanning line spacing during laser micro texturing, the effect of laser micro texturing on the surface morphology of CFRP and the strength of aluminum alloy bonded joints was investigated. Results show that in the laser micro texturing process, when the scanning line spacing was 0.3 mm, the maximum tensile shear strength was 14.5 MPa, approximately 200% higher than that without laser treatment.
  • 5 View
  • 0 Download
A Study on the Fracture Characteristics of Structural Adhesives according to the Shape of Double and Tapered Double Cantilever Beams Using the Finite Element Method
Jae-Won Kim, Seong-Sik Cheon, Sung-Ki Lyu, Jae-Ung Cho
J. Korean Soc. Precis. Eng. 2019;36(12):1157-1163.
Published online December 1, 2019
DOI: https://doi.org/10.7736/KSPE.2019.36.12.1157
In this study, the fracture characteristics of structural adhesives were investigated according to the shape of a DCB and TDCB by using the FEM. First, to obtain the reliability of the finite element method, the experimental and FEM analyses were compared, and the reliability was secured. When the graph of reaction force to displacement on the TDCB test specimen was examined, it was found that the smaller the slope, the stronger the exhibited property sustaining the load to the end of the adhesive surface. Maximum reaction force occurred was just before the adhesive was removed. The shear stress of the specimen exhibited the same characteristics and an equivalent stress. Thus, the data of this study resulting in the fracture characteristics of the structural adhesives for each shape can be applied to the design with durability.
  • 5 View
  • 0 Download
Performance Evaluation and Analysis on Protective Coating Applied to HPT Heat Shield of GT24 Gas Turbine
Junghan Yun, Jeong-Min Lee, Chang-Sung Seok, Sukhwan Kwon, Byoungkwan Yun, Byungmoon Chang
J. Korean Soc. Precis. Eng. 2019;36(1):53-57.
Published online January 1, 2019
DOI: https://doi.org/10.7736/KSPE.2019.36.1.53
Gas turbine, the core equipment of the power plant, is capable of rapid starting operation and has less carbon dioxide emission than coal power plant. So it has the advantage of being eco- friendly. In order to increase the efficiency of these gas turbines, the turbine inlet temperature has steadily increased and to ensure the safety of the gas turbine, means for protecting parts exposed to high temperatures have also been developed. Protective coating technology is one of them, which plays the role of lowering the temperature of the base metal and preventing oxidation and corrosion. In this paper, thermal fatigue test simulating the operation environment was conducted using the Amdry 9951 protective coating powder applied to the HPT Heat Shield for the Alstom GT 24 gas turbine and the performance before and after the thermal fatigue test was evaluated and examined by adhesive strength test and SEM (EDS) analysis.
  • 5 View
  • 0 Download