The Electrochemical Hydrogen Compressor is an optimal device for compressing low-pressure hydrogen to high-pressure hydrogen. It has a similar structure to the Proton Exchange Membrane Fuel Cell but operates at extremely high pressures, requiring multiple cells sealed with End Plates. The End Plate design must provide initial cell activation support, withstand maximum operating pressure within the stack, and prevent internal gas leakage. This study applies a multi-objective optimization method and grey relation analysis to determine the optimal design parameters for the End Plate based on the activation area of Dummy Cells. Finite Element Method (FEM) analysis is conducted to verify the effectiveness of the optimized End Plate design, considering the uniform pressure distribution with stacked Dummy Cells (1, 3, 6, 12). The analysis reveals that the parameters affecting the uniform pressure distribution include the End Plate design, stack sealing pressure, individual Cell design parameters, and the number of Cell stack layers.
The large gas turbine rotor used for power generation has a structural characteristic comprising a shaft, disk, and blade assembled to the disk. Because the start/stop is repeated, the tightening force may be reduced in the process of repeating the tightening force between the tie rod and the disk. When the tightening force falls below the threshold, changing the critical speed, increasing the vibration, or in extreme cases, the rotor may loosen and cause a major accident. Also, it is imperative to continuously maintain the proper tightening force because the thread of the tie rod is damaged when the tightening force exceeds the yield stress condition of the tie rod. In this paper, the gas turbine rotor system is modeled and simplified to identify the control variable of the tightening force of the tie rod bolts of the rotor. For verification, a simplified model of the gas turbine rotor was designed, manufactured, and verification tests were conducted to confirm the adequacy of the calculation method. As a result, the tightening force decreased as the stiffness of the pressing disk decreased, so the stiffness of the pressing disk should have a stiffness range similar to that of the tie rod.