This study outlines a structural design process for a cylindrical superelastic shape memory alloy (SMA) ligation clip. Although polymer-based clips are widely used, they face challenges related to long-term stability and limited radiopacity, highlighting the necessity for metal clips. By systematically modifying two key design variables—the hole offset ratio and the cut-off ratio—the proposed clip effectively reduces excessive stress concentration and enhances superelastic behavior. Finite element analyses indicate that the stress deviation in the two cross-sectional deformation regions decreased by 83.9%, and the martensitic transformation remained confined to a small area, demonstrating robust strain recovery within the superelastic range. In conclusion, the improved SMA clip successfully withstood internal pressures exceeding 15 psi without leakage, showcasing its superior ligation performance and potential for durable, reliable use in minimally invasive surgical procedures.
This study examines how two key design parameters—the pre-stretch ratio and the thickness of the carbon nanotube (CNT) electrode—affect the actuation performance of dielectric elastomer actuators (DEAs). DEA samples are created with varying pre-stretch levels (50% and 125%) and different amounts of CNT spray coating (4 and 8 mg), and their threshold voltages and areal strains are quantitatively assessed. The experimental results indicate that higher pre-stretch ratios result in lower threshold voltages and greater areal deformations, while increased CNT thickness typically reduces actuator deformation due to enhanced mechanical stiffness. The combination of a high pre-stretch ratio and low CNT loading demonstrates improved electro-mechanical responsiveness at moderate voltages. These findings underscore the interconnected effects of structural and electrode design on DEA performance, offering practical design guidelines for optimizing soft actuator systems. This research lays a solid foundation for future applications of DEAs in haptic interfaces, wearable actuators, and soft robotics.
Citations
Citations
Citations
Citations
Citations
Citations
Citations