Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

7
results for

"3차원 프린팅"

Article category

Keywords

Publication year

Authors

"3차원 프린팅"

REGULAR

Tensile Behavior of 3D Printed Specimens by Small Punch Test
Bum Joon Kim
J. Korean Soc. Precis. Eng. 2025;42(10):879-884.
Published online October 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.121

The purpose of this study is to evaluate the deformation behavior of 3D printed specimens using the small punch tensile test method. Traditional tensile tests for assessing mechanical properties require a significant amount of material to produce uniaxial tensile specimens. In contrast, the small punch test method only requires 10 x 10 x 0.5 mm (width x length x thickness) thin plate specimens, providing a substantial economic advantage in specimen sampling and production. This method is particularly beneficial when it is impossible to produce specimens of the same size as uniaxial specimens, as it allows tensile testing with just the minimum sample required. In this study, we utilized fused deposition modeling 3D printing and considered various 3D printing parameters, such as layer height and volume fraction, while manufacturing the specimens. We then compared and analyzed the effects of these variables on tensile strength as measured by the small punch tensile test. Furthermore, we focused on investigating the applicability of this method to the deformation behavior of 3D printed specimens. We also examined the impact of laminating conditions, including layer height, printing speed, and laminating direction, on the failure modes observed after the small punch tensile test.

  • 7 View
  • 0 Download
Articles
Fabrication and Evaluation of HDPE Additive Manufacturing with Zig-zag Layer Method
Si Seup Kim, Ji Kwan Kim
J. Korean Soc. Precis. Eng. 2025;42(2):121-128.
Published online February 1, 2025
DOI: https://doi.org/10.7736/JKSPE.024.114
This study aims to optimize the process conditions for high-density polyethylene (HDPE) additive manufacturing through a systematic analysis of key variables, including material selection, layer height, feed rate, melting temperature, and bed temperature. By exercising precise control over these variables, optimal conditions were established, which included a melting temperature of 240oC, a welding speed of 150 cm/min, and a material throughput of 5.66 kg/h. Furthermore, the process was refined by implementing a zig-zag layering method, which significantly improved the stability, bonding strength, and overall mechanical properties of the final HDPE products. The effects of these optimized process conditions were assessed through a series of mechanical tests, such as tensile tests, impact tests, and heat deflection temperature (HDT) tests. As a result, the defined process conditions yielded excellent mechanical performance, achieving a tensile strength of 21.15 MPa, an impact strength of 320 J/m, and an HDT of 93oC. Overall, this study illustrates the enhancement of HDPE additive manufacturing quality through the optimization of process conditions. The strategic implementation of these optimized variables, along with advanced extrusion module design, demonstrates the potential for producing high-quality and cost-effective HDPE products, thereby underscoring their enhanced marketability and performance potential.
  • 4 View
  • 0 Download
Lightweight Design of a Sledge Frame for Para Ice Hockey Using Design for Additive Manufacturing
Eun-Ji Oh, Ju-Hye Lee, Jae-Eun Kim, Keun Park
J. Korean Soc. Precis. Eng. 2020;37(6):407-414.
Published online June 1, 2020
DOI: https://doi.org/10.7736/JKSPE.020.039
The purpose of this study was to design a sledge frame for para ice hockey in which an athlete sits and plays on a sledge. A sledge comprises a bucket, a blade carrier, and a frame. A sledge frame is usually fabricated by welding a number of pipes, and thus its structural safety is degenerated at the welded joints. In this study, the sledge frame was redesigned using the principle of DfAM (Design for Additive Manufacturing), to reduce the frame weight as well as to have sufficient structural safety. As an application of DfAM, the part consolidation was performed for six joints from which the number of welding spots was reduced to 56% (From 16 to 9). Among the resulting four consolidated joints, topology optimization was performed for three joints to reduce their weight while maintaining higher structural stiffness and safety. As a result, the structural stiffness and safety of the joints improved remarkably, and the resulting frame weight was reduced by 20% (From 1.66 to 1.34 kg). This weight reduction with structural enhancement is expected to improve athletes’ performance and safety in para ice hockey games.

Citations

Citations to this article as recorded by  Crossref logo
  • A Study on Improvement of Flow Characteristics of TPMS Heat Exchanger based on Mathematical Filtering
    Seo-Hyeon Oh, Jeong Eun Kim, Ji Seong Yun, Do Ryun Kim, Jungwoo Kim, Chang Yong Park, Keun Park
    Journal of the Korean Society for Precision Engineering.2024; 41(7): 541.     CrossRef
  • Additive Manufacturing of a Release Agent Injection Manifold for Hot Forging
    Hak-Sung Lee, Min-Kyo Jung, Eun-ah Kim, Soonho Won, Do Wock Chun, Taeho Ha
    Journal of the Korean Society for Precision Engineering.2021; 38(9): 675.     CrossRef
  • Analysis on the Warm Bending Process of Magnesium Alloy Sheet Using Additively Manufactured Polymer Die-Set
    Hyung-Won Youn, Jun-Hyun Kyeong, Keun Park, Chang-Whan Lee
    Journal of the Korean Society for Precision Engineering.2021; 38(10): 775.     CrossRef
  • Lightweight Design of a Vacuum Gripper for Inspection Equipment Using Topology Optimization
    Euddeum Cha, Tae-Young Kim, Taeho Ha, Keun Park
    Journal of the Korean Society for Precision Engineering.2021; 38(9): 683.     CrossRef
  • 8 View
  • 0 Download
  • Crossref
Feasibility Study on Dimensional Standard for Material Extrusion Type 3D Printed Structures
Sunghoon Eom, Jungjae Park, Jonghan Jin, Yong Son
J. Korean Soc. Precis. Eng. 2020;37(4):241-246.
Published online April 1, 2020
DOI: https://doi.org/10.7736/JKSPE.019.118
Material extrusion (ME) type 3D printing has been widely utilized through various types of systems depending on the fabrication methods, materials, and precision to fabricate complex workpieces that cannot be made with conventional methods. This study provides basic considerations in response to the current demands on performance evaluation of ME type 3D printing related to dimensions as well as the realization of the guidelines to be established in the near future. As a simple specimen for these purposes, 2D and 3D hole-plates were designed and fabricated by using a ME type entry-level 3D printer. For evaluation of dimensions on the specimen, both specimens were measured by a calibrated tool-maker’s microscope which is to length standard. The measurement parameters were the center position of the holes, the diameter of the holes, and the circularity error of the holes.

Citations

Citations to this article as recorded by  Crossref logo
  • A Study on 3D Printing Conditions Prediction Model of Bone Plates Using Machine Learning
    Song Yeon Lee, Yong Jeong Huh
    Journal of the Korean Society for Precision Engineering.2022; 39(4): 291.     CrossRef
  • Dimensional Characteristics of Hydraulic Actuator Curve based on 3D Printing Filament Materials
    Myung-Hwi Jung, Jeong-Ri Kong, Hae-Ji Kim
    Journal of the Korean Society of Manufacturing Process Engineers.2021; 20(1): 74.     CrossRef
  • Effect of Fused Deposition Conditions on the Fracture Behavior of 3D Printed Tensile Specimens
    Bum Joon Kim
    Journal of the Korean Society for Precision Engineering.2020; 37(6): 421.     CrossRef
  • 6 View
  • 0 Download
  • Crossref
Thermal-Fluid Coupled Analysis of the Nozzle Part for the FDM 3D Printers Considering Flow Characteristics of Cooling Fan
Chang-Whan Lee, Hyun-Woo Kim, Jea-Hyeong Yu, Keun Park
J. Korean Soc. Precis. Eng. 2018;35(5):479-484.
Published online May 1, 2018
DOI: https://doi.org/10.7736/KSPE.2018.35.5.479
For 3D printing of high-strength polymers, such as PC (Polycarbonate) and PEI (Polyetheimide), the temperature of the nozzle should exceed the melting temperature of the high-strength materials. At the same time, the temperature of the transfer part, composed of the shaft extruder and the Teflon hose, should be cooled below the glass transition temperature and below the limit temperature of the transfer part. In this study, we analyzed the effect of the flow rate of the cooling fan when the extruder nozzle is heated to 300oC. We compare the natural convection environment, in which the cooling fan is not operated, and the forced convection condition, in which the cooling fan is operated, and analyze the effect on the cooling fan flow rate. The simulation considered the heat transfer in the air and the nozzle, as well as the flow characteristics of the air.

Citations

Citations to this article as recorded by  Crossref logo
  • A Study on the Improving Extrusion Defects in FDM 3D Printers
    Jun-Seok Do
    Journal of the Korean Society of Manufacturing Process Engineers.2024; 23(4): 80.     CrossRef
  • Analysis of Correlation between FDM Additive and Finishing Process Conditions in FDM Additive-Finishing Integrated Process for the Improved Surface Quality of FDM Prints
    Ji Won Yu, Hyung Jin Jeong, Jae Hyung Park, Dong Hun Lee
    Journal of the Korean Society for Precision Engineering.2022; 39(2): 159.     CrossRef
  • Analysis on the Warm Bending Process of Magnesium Alloy Sheet Using Additively Manufactured Polymer Die-Set
    Hyung-Won Youn, Jun-Hyun Kyeong, Keun Park, Chang-Whan Lee
    Journal of the Korean Society for Precision Engineering.2021; 38(10): 775.     CrossRef
  • Indirect Temperature Measurement in High Frequency Heating Systems
    Alexander Oskolkov, Igor Bezukladnikov, Dmitriy Trushnikov
    Sensors.2021; 21(7): 2561.     CrossRef
  • 7 View
  • 0 Download
  • Crossref
Thermal-Structural Coupled Numerical Analysis for Design of High-Temperature Extruder of FDM 3D Printers
Da-Yeon Shin, Hyun-Joong Lee, Chang-Whan Lee, Keun Park
J. Korean Soc. Precis. Eng. 2018;35(3):341-347.
Published online March 1, 2018
DOI: https://doi.org/10.7736/KSPE.2018.35.3.341
This study aims at developing a high temperature extruder for an FDM (Fused Deposition Modeling) type 3D printer that uses engineering thermoplastic filaments. An extruder is a key part of an FDM type printer, in which a filament moves to a heating block and is extruded through a nozzle with a specific diameter. For an appropriate extrusion, the filament should be heated above its softening temperature. Specifically, the filament should not be melted nor softened before it reaches the heating block for appropriate delivery. Hence, the extruder temperature should be carefully controlled to ensure its heating capability as well as its proper delivery. To meet these requirements, thermal-structural finite element (FE) analyses were performed for the prediction of the distributions of temperature and thermal stress. Various extruder designs were then considered to maximize the temperature difference between the nozzle and delivery parts, as well as to ensure structural safety.

Citations

Citations to this article as recorded by  Crossref logo
  • A Study on the Improving Extrusion Defects in FDM 3D Printers
    Jun-Seok Do
    Journal of the Korean Society of Manufacturing Process Engineers.2024; 23(4): 80.     CrossRef
  • Optimization Design of Student KSAE BAJA Knuckle Using SLM 3D Printer
    Young Woo Im, Geon Taek Kim, Hyeon Sang Shin, Kang Min Kim, Bu Hyun Shin, Jong Won Lee, Jinsung Rho
    Journal of the Korean Society for Precision Engineering.2023; 40(9): 719.     CrossRef
  • Thermal-Fluid Coupled Analysis of the Nozzle Part for the FDM 3D Printers Considering Flow Characteristics of Cooling Fan
    Chang-Whan Lee, Hyun-Woo Kim, Jea-Hyeong Yu, Keun Park
    Journal of the Korean Society for Precision Engineering.2018; 35(5): 479.     CrossRef
  • 6 View
  • 0 Download
  • Crossref
A Study on Development of Three-Dimensional Chocolate Printer
Kyu Eon Kim, Keun Park, Chibum Lee
J. Korean Soc. Precis. Eng. 2017;34(4):293-298.
Published online April 1, 2017
DOI: https://doi.org/10.7736/KSPE.2017.34.4.293
In this study, we developed a 3D chocolate printer and studied the conditions needed for chocolate printing. Because chocolate is a mixture of cocoa mass, cocoa butter and sugar particles, its properties vary with temperature, and care is required in melting and extrusion. A chocolate supply unit is composed of a heating block and a syringe pump. It is integrated with a 3-axis linear robot. In order to be more accurate than the existing 3D chocolate printer is, the system was configured so that the printing line width became 430 μm. Printing performance was studied according to various parameters. The condition needed for printing lines with a stable width was discovered by the experimental design method and has been confirmed by a 2D line test. These 3D printing experiments showed that it was possible to build a 3D shape with an inclination angle of up to 45° without support. Further, chocolate printing of a 3D shape has been successfully verified with the developed system.

Citations

Citations to this article as recorded by  Crossref logo
  • Quality Characteristics of Jujube Brownie with Jujube Paste
    Hyeon Sook Lim, Mi Ra Choi, Su In Kim, Gyung Hee Cha
    Journal of the East Asian Society of Dietary Life.2021; 31(3): 191.     CrossRef
  • Development of a Material Mixing Extrusion Type Chocolate 3D Printer
    MinSoo Park, HyungJik Jeong, JaeHyuek Moon, JungMuk Lim
    Journal of the Korean Society for Precision Engineering.2021; 38(2): 145.     CrossRef
  • Ceramic Direct Rapid Tooling with FDM 3D Printing Technology
    Geun-Sik Shin, Hyun-Kyu Kweon, Yong-Goo Kang, Won-Taek Oh
    Journal of the Korean Society of Manufacturing Process Engineers.2019; 18(7): 83.     CrossRef
  • Thermal-Structural Coupled Numerical Analysis for Design of High-Temperature Extruder of FDM 3D Printers
    Da-Yeon Shin, Hyun-Joong Lee, Chang-Whan Lee, Keun Park
    Journal of the Korean Society for Precision Engineering.2018; 35(3): 341.     CrossRef
  • 6 View
  • 0 Download
  • Crossref