Holonic Manufacturing Systems (HMSs) are regarded as a foundation of cyber-physical production systems as they enable computers to conduct intelligent process planning, scheduling, and control by endowing manufacturing components with autonomy and collaboration. In an HMS, autonomy is realized by specifying holons that represent virtual agents of manufacturing components, while collaboration is facilitated through a communication mechanism that enables data exchange and decision making throughout a holarchy of holons without human intervention. This study presents the development of a virtualized holon model and a predictive process planning procedure using the Asset Administration Shell (AAS), i.e., a standardized model that can identify digital representation of manufacturing components to ensure interoperability. Specifically, an AAS-based information model was proposed to define operator, machine, product, and order holons. In addition, a predictive process planning procedure based on the Contract Net Protocol was developed to automatically allocate tasks while predicting task execution times. This study can contribute to the designing of an AAS- domain specific information model for HMS to increase interoperability in the holon holarchy, exhibiting the feasibility of AAS applications in predictive process planning on HMS.
Citations
Citations to this article as recorded by
A Review of Intelligent Machining Process in CNC Machine Tool Systems Joo Sung Yoon, Il-ha Park, Dong Yoon Lee International Journal of Precision Engineering and Manufacturing.2025; 26(9): 2243. CrossRef