Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

1
results for

"Automated imprinting system"

Article category

Keywords

Publication year

Authors

"Automated imprinting system"

SPECIAL
Mass-producible Stepwise Thermal Patterning for Bio-inspired Dry Adhesives
Han Jun Park, Minsu Kim, Songyoung Lee, Moon Kyu Kwak
J. Korean Soc. Precis. Eng. 2025;42(10):833-841.
Published online October 1, 2025
DOI: https://doi.org/10.7736/JKSPE.D.25.00008

Dry adhesives inspired by gecko footpads have garnered considerable attention due to their unique features, including strong yet reversible adhesion, self-cleaning properties, and repeatable use. However, scaling these microstructured adhesives from laboratory fabrication to continuous, high-throughput manufacturing poses significant challenges. In this study, we introduce a stepwise thermal patterning system designed for the scalable production of gecko-inspired dry adhesives on flexible substrates. This automated system combines sequential processes such as plate-to-plate micro-molding, rapid thermal curing, demolding, and roll-up of the patterned film. By raising the curing temperature to approximately 180oC and employing an efficient stepwise imprinting method, we achieve fabrication speeds of up to 150 mm/min without compromising pattern accuracy. The system successfully replicates micropillar structures with a diameter of 15 μm and height of 15 μm, featuring 20 μm mushroom-shaped tips on flexible substrates. The resulting dry adhesives demonstrate stable pull-off strengths of 20-23 N/cm² and retain over 83.5% of their initial adhesion after 100,000 attachment–detachment cycles. These findings highlight the potential of our platform for reliable, high-throughput manufacturing of bio-inspired adhesives, paving the way for various industrial applications such as robotic manipulators, pick-and-place electronic assembly, and wearable devices that require repeated, residue-free attachment.

  • 8 View
  • 1 Download