This paper addresses two methods to estimate the target incapacitation distance and probability of the arbitrary fragmentation warhead under the static detonation test condition. One is based on the probability equation suggested by Sperrazza and Kokinakis. The other is originated from the stationary detonation test concept to measure the performance of the fragmentation warhead. In the arbitrary fragmentation warhead, the target incapacitation probabilities obtained from the two methods were compared with each other. We found that the size of the fragment with cubic shape should be more than 3.5 mm to maximize the target incapacitation distance in the test method. And we also realized that the difference between the target incapacitation distance of the analysis method based on the test (AMBT) and that of the analysis method based on the probability equation (AMBPE) is decreased according to the increase of the fragment size. In conclusion, this paper can be useful for the estimation of the fragmentation warhead performance at the design stage.
This study proposed the proper detonation delay time of a main warhead after a precursor warhead detonation in an arbitrary tandem shaped charge missile as 407 μsec. In addition, the available detonation delay time range of the main warhead was proposed to be between 396 μsec and 418 μsec. The proposed figures were based on the analysis of the target protection capability and the scattering reactor behaviors of the explosive reactive armor with dual reactive panels. By virtue of this work, the determination of main warhead detonation delay time is more effective and convenient. Finally, the tandem shaped charge missile with more effective penetration performance also could be developed in the future.
As mechanical structures are minimized, the demand on micro dies and molds has increased. Machining complex 3D shapes requires fabrication procedures for preparing the electrodes. Micro electrical discharge milling using a simple shape electrode can produce 3D micro structure. In this paper the machining characteristics of micro electrical discharge milling according to depth of cut and capacitance are investigated. The machining time is diminished when simple tool-paths and algorithms for changing the feedrate are applied. But a distorted bottom shape and a tapered wall shape are inevitable after machining. The distorted bottom shape and the taper angle of wall are reduced by finish machining.