In this paper, a microfluidic co-culture system comprising an embedded polydimethylsiloxane (PDMS) microstencil was fabricated. The fabricated co-culture system has two micro-channels separated with a PDMS microstencil membrane. Master molds for microchannels and stencil membranes were fabricated by photolithography, then used for casting of PDMS devices. The stencil membrane was 10 thick, with holes 10-μm large in diameter. The fabricated system co-cultured two types of cells (HepG2, NIH-3T3 Cells) successfully for seven days. The viability and stability of the cells were verified through LIVE/DEAD® staining and analysis. Additionally, albumin secretion of HepG2 cells was measured for seven days, using an HSA ELISA kit. The measured data were analyzed, to compare the activity of HepG2 cells. Results confirmed that cells can be co-cultured in the fabricated microfluidic system.
In this study, we present the multilayered symmetrical droplet splitting microfluidic system for preparation of microspheres. The microfluidic device was fabricated by conventional photolithography and PDMS casting. Multiple layers of microfluidic channels for symmetrical droplet splitting were stacked and integrated into a device. Each layer was designed to obtain 16 microdroplets from one droplet by droplet splitting. The droplet size was controlled with flow rate of dispersed phase (DI-water) and continuous phase (Mineral Oil with 3 wt.% SPAN80) by using a syringe pump. The droplet splitting behavior and production rate were analyzed by high-speed camera and inverted microscope in one layer of the microfluidic device. Additionally, the droplet size and size distribution were observed in each layer of the microfluidic device. The droplet size could be controlled by flow control of two phase flows with high uniformity of droplet size less than 5% coefficient of variation.
Citations
Citations to this article as recorded by
Process for the Fabrication of Nickel Material High Aspect-ratio Digital PCR Partition GeeHong Kim, HyungJun Lim, SoonGeun Kwon, Hak-Jong Choi Journal of the Korean Society for Precision Engineering.2024; 41(8): 663. CrossRef
We present a multi-sample array device based on a pneumatic system. Solenoid valves were used to control a micro valve in a pneumatic system. The use of a compressor together with a vacuum pump ensured that one outlet could supply both compression and vacuum pressure. The multi-sample array device was fabricated using conventional photolithography and PDMS casting. The device was composed of a multiplexer, sample array, and rinsing. The multiplexer could control four sample solutions injecting into the sample array chamber. Sample solution not arrayed was removed by DI-water from the rinsing inlet. To prevent trapping of microbubbles in the channel during injection of sample solution into the device, surfactant was added in PDMS solution to serve as a hydrophilic surface treatment. As a result, the device could be used as a sample array for 64 cases, using four samples and three columns of three chambers.
Citations
Citations to this article as recorded by
Shape Optimization of Pneumatic Angle Valve Using Structural Analysis In-Soo Son Journal of Power System Engineering.2020; 24(5): 48. CrossRef
Non-Contact Intraocular Pressure Measurement Method using Relation between Deformed Cornea and Reflected Pneumatic Pressure Hyung Jin Kim, Young Ho Seo, Byeong Hee Kim International Journal of Precision Engineering and Manufacturing.2018; 19(5): 737. CrossRef
We present a method of fabricating poly (lactic-co-glycolic acid) (PLGA) porous microfibers using a pore template. PLGA microfibers were synthesized using a glass capillary tube in a poly-(dimethylsiloxane) (PDMS) microfluidic chip. Gelatin solution was used as a porous template to prepare pores in microfibers. Two phases of PLGA solutions in different solvents-DMSO (dimethyl sulfoxide) and DCM (dichloromethane)-were used to control the porosity and strength of the porous microfibers. The porosity of the PLGA microfibers differed depending on the ratio of flow rates in the two phases. The porous structure was formed in a spiral shape on the microfiber. The porous structure of the microfiber is expected to improve transfer of oxygen and nutrients, which is important for cell viability in tissue engineering.