In this paper, a deburring tool with 3-axis compliance is presented for deburring using a robot manipulator. Compliance is provided with beam structures instead of pneumatic pressure, which enables integrated 3-axis force sensing and variable stiffness. Two radial compliances were achieved using 4-PSS (Prismatic-Spherical-Spherical) legs, with P joints composed of cantilever beams. The one axial compliance was configured with two ball bushings and a linear spring. Strain gauges were attached to cantilever beams and a load cell was mounted between the linear spring and the universal joint to perform force sensing. The stability of vibrations and force sensing were verified through deburring experiments using the proposed deburring tool. Additionally, experiments on automatic offset for applying a constant force during deburring were conducted and results were validated by comparing the workpiece before and after the deburring process.
Citations
Citations to this article as recorded by
Stress Analysis of a Robot End-Effector Knife for the Deburring Process Jeong-Jin Park, Jeong-Hyun Sohn, Kyung-Chang Lee Journal of the Korean Society of Manufacturing Process Engineers.2025; 24(6): 42. CrossRef
Stress Analysis of a Robot End-Effector Knife for the Deburring Process Jeong-Jin Park, Jeong-Hyun Sohn, Kyung-Chang Lee Journal of the Korean Society of Manufacturing Process Engineers.2025; 24(6): 42. CrossRef
A circular flexure hinge is a core element for force transmission and relative motion of precision stages used in semiconductor processes. When designing a circular flexure hinge, calculation formulas for axial and rotational compliance are essential. However, in the case of axial compliance, results of the existing calculation formulas have significant differences from reliable finite element analysis results. In this study, calculation formulas for axial compliance of the circular flexure hinges were derived based on stress distribution phenomenon. Comparison with finite element analysis results confirmed that the newly developed calculation formulas were more accurate than existing ones. It is anticipated that these enhanced formulas will lead to more precise designs, ultimately reducing both time and costs in research and industry.
Precision positioning stages are devices for precisely positioning objects according to required degrees of freedom and performance. Precision positioning stages are classified into serial and parallel mechanisms. Except for specific applications, the parallel mechanism is preferred. In serial mechanism, dynamic characteristics such as resonant frequency are clearly different from axis to axis and the first resonance frequency is distinctly low compared to the second. These make the control performance different for each axis and incurs limitation in control. In this study, the first and second resonant frequencies in a serial 2-DOF precision positioning stage were increased while maintaining their approximal value. Compliance analysis for the stage was performed by applying the matrix based method. A new concept of resonant frequency isotropy (RFI) was introduced and design optimization was performed in which first and second resonant frequencies almost coincided. This optimization allowed for the design of a serial 2-DOF precision positioning stage with enhanced first resonance frequency by 50.8% and RFI by 80.2% compared to the initial design. This paper is expected to increase the use of precision positioning stages based on serial mechanism and apply the concept of RFI to the positioning stages with more than 2-DOF.
Recently, there are numerous studies on robots to function with smoother movement and high efficiency. It is difficult to develop robots with smooth movement and high efficiency. To solve this problem, the Series Elastic Actuator (SEA) is used. It is an actuator that gives compliance to a general actuator. Presence of compliance will bring to advantages. First, robots can reduce external impact force with high compliance. Second, the force of SEA can be controlled more precisely, than a normal actuator. Some SEAs have been developed with many functions, but the structure is complicated. So, in this study, the SEA with compact and simple structure was proposed. Shape of the SEA is cylindrical, and its diameter, height and weight are 70mm, 338mm, and 2.5kg respectively. The SEA was modeled in a two-degree of freedom mass spring damper system. To demonstrate travel response characteristics of the SEA, experiments were conducted and the result revealed design of the SEA is validated.