Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

11
results for

"Cutting force"

Article category

Keywords

Publication year

Authors

"Cutting force"

Articles
A Study on Finite Element Analysis on Stress-strain and Cutting Force in Blade Operation in Rotary Die Cutting of PET Film
Sooyeon Cho, Minwook Kim, Wook-Bae Kim
J. Korean Soc. Precis. Eng. 2025;42(4):315-323.
Published online April 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.003
Finite element analysis (FEA) was conducted to investigate the cutting process of a single-layer PET film during rotary die cutting. In a roll-to-roll system, cutting blades formed on rollers were modeled as rigid bodies, while the PET film was modeled as an elastoplastic material using a two-dimensional approach. Stress-strain behavior of the film was measured through experimental tensile testing and used as input data for FEA. Force-displacement data from vertical cutting experiments of PET film were collected to validate the FE model and compared with simulation results. Stress distribution of the film and cutting force per unit thickness during the rotary cutting process were analyzed. The cutting force and range of effective cutting angles were proportional to tip angle of the blade within a range of 25 to 60 degrees, showing a noticeable change in proportionality slope at a tip angle of 40 degrees. As the film tension increased, the cutting force in thickness direction decreased, while that in longitudinal direction remained almost constant. Errors in film feed velocity significantly affected the cutting force. When the film moved slightly slower than the reference velocity, the cutting force was minimized due to reduced contact between the film and blade surface.
  • 5 View
  • 0 Download
Enhancing Chatter Vibration Analysis in Turning Processes through Advanced Multiple-denoising Wavelet Techniques
Chanikan Pomusa, Bandit Suksawat
J. Korean Soc. Precis. Eng. 2025;42(4):273-284.
Published online April 1, 2025
DOI: https://doi.org/10.7736/JKSPE.024.128
This study investigated the natural frequency of a self-excited vibrating workpiece and cutting tool using a hammer impact test to acquire vibration data. Time-domain cutting vibration data were converted to the frequency domain using FFT. The workpiece signal exhibited a high amplitude, peaking at 392 Hz, while the cutting tool signal presented a peak at 930 Hz. Stability Lobe Diagrams were constructed to assess dynamic stability. Cutting experiments revealed an obvious relationship between spindle speed and signal amplitude, with higher speeds leading to larger amplitudes. Frequency analysis revealed a peak near the cutting tool's 900 Hz natural frequency. Smoother surface finishes were observed at 0.15 mm cutting depth, while 0.2 mm resulted in a wavy surface, indicating chatter. To investigate chatter frequency and reduce noise, a multiple-denoising method combined Bior 3.7 and DB10 wavelets to reduce amplitude and improve signal representation, especially for non-smooth features. The proposed method aimed to reduce the 900 Hz cutting tool’s natural frequency. Results showed a clear chatter frequency at 450-480 Hz for 0.2 mm depth cuts at spindle speeds of 500, 1,000, and 1,400 rpm. The proposed method exhibited high efficiency, achieving the higher signal-to-noise ratio and lower mean-square error than Bior 3.7 and DB10 wavelet denoising techniques.

Citations

Citations to this article as recorded by  Crossref logo
  • A Review of Intelligent Machining Process in CNC Machine Tool Systems
    Joo Sung Yoon, Il-ha Park, Dong Yoon Lee
    International Journal of Precision Engineering and Manufacturing.2025; 26(9): 2243.     CrossRef
  • 8 View
  • 0 Download
  • Crossref
Cutting Force Monitoring Considering Electrical Characteristics of Spindle Motor
Jae-Eun Kim, Jun-Young Oh, Beomsik Sim, Wonkyun Lee
J. Korean Soc. Precis. Eng. 2025;42(1):19-25.
Published online January 1, 2025
DOI: https://doi.org/10.7736/JKSPE.024.095
The importance of cutting forces in machining has been emphasized for monitoring and optimizing cutting conditions, leading to various method to detecting cutting forces researched. Cutting forces can be directly measured using dynamometer or indirectly estimated using AE sensors and accelerometers, etc. However, these external sensors demand high costs and have accuracy limitations due to environment issues. To compensate for these drawbacks, utilizing internal signals of machine tool has been developed. Among these, using internal electrical signals of machine tool is representative. In commercial machine tools, cutting forces are often estimated through current measurements. However, due to the characteristics of the spindle motor, electrical properties such as slip, power factor, and efficiency vary with the load, resulting in relatively lower accuracy. This study introduces current-based method considering characteristics of motor and power-based method for estimating cutting forces and compare accuracy of those methods with the measurements from dynamometer respectively.
  • 5 View
  • 0 Download
Digital Twin Platform for Machining Robotic Production System based on Cutting Force Physics Models
Ju-Hyung Ha, Dong-Min Kim
J. Korean Soc. Precis. Eng. 2024;41(6):459-465.
Published online June 1, 2024
DOI: https://doi.org/10.7736/JKSPE.024.017
Digital twin technology offers the advantage of monitoring the status of equipment, systems, and more in a virtual environment, allowing validation through simulation. This technology has found numerous applications in the industrial robotics field, driven by recent advancements in the manufacturing industry. Consequently, predicting machining quality using digital twin technology is imperative for ensuring high-quality processed goods. In this study, we developed a digital twin program based on a cutting-force physical model and created a performance enhancement module that allows the visualization of material removal for user convenience. The predicted cutting forces from both conventional CNC and the physical model demonstrate a high accuracy of within 2%. Within the digital twin environment, the error rate for the robotic drilling process is 13.5%. Building upon this, we developed and validated a module for material removal visualization, aiming to increase convenience for on-site operators.

Citations

Citations to this article as recorded by  Crossref logo
  • A Review of Intelligent Machining Process in CNC Machine Tool Systems
    Joo Sung Yoon, Il-ha Park, Dong Yoon Lee
    International Journal of Precision Engineering and Manufacturing.2025; 26(9): 2243.     CrossRef
  • 9 View
  • 0 Download
  • Crossref
Voxel Based Fast Cutting Force Simulation in NC Milling Process
Segon Heo, Chang-Ju Kim, Jeong Seok Oh
J. Korean Soc. Precis. Eng. 2022;39(12):885-890.
Published online December 1, 2022
DOI: https://doi.org/10.7736/JKSPE.022.116
With the advent of the 4th industrial revolution, advanced digital manufacturing technologies are actively developed to strengthen manufacturing competitiveness. Smart factories require a real-time digital twin including a Cyber-Physical System (CPS) of machines and processes and intelligent technologies based on the CPS. To predict machining quality and optimize machines and processes, it is necessary to analyze the cutting force during machining. Therefore, for real-time digital twin, a fast cutting force simulation model that receives information such as the positions of the feed axes in short time intervals from the CNC and calculates the cutting force until the next information is input is required. This paper proposes a voxel-based fast cutting force simulation in NC milling for real-time digital twin. The proposed simulation model quickly calculates the cutting force by using only information of voxel elements removed by each tool edge without complicated Cutter-Workpiece Engagement (CWE) and chip thickness calculations in previous studies. To verify the performance of the developed simulation, experimental machining was performed and the measured cutting force and simulated cutting force were compared. It was demonstrated that the proposed model can successfully predict the cutting force 3.5 times faster than the actual process.

Citations

Citations to this article as recorded by  Crossref logo
  • Autonomous Mobile Machining and Inspection System Technology for Large-Scale Structures
    Seung-Kook Ro, Chang-Ju Kim, Dae-Hyun Kim, Sungcheul Lee, Byung-Sub Kim, Jeongnam Kim, Jeong Seok Oh, Gyungho Khim, Seungman Kim, Seongheum Han, Quoc Khanh Nguyen, Jongyoup Shim, Segon Heo
    International Journal of Precision Engineering and Manufacturing.2025; 26(9): 2345.     CrossRef
  • 8 View
  • 0 Download
  • Crossref
The Investigation of the Sensitivity and Direction of the Maximum Surface Error in Peripheral Milling
Su-Jin Kim, Yung C. Shin
J. Korean Soc. Precis. Eng. 2021;38(11):795-806.
Published online November 1, 2021
DOI: https://doi.org/10.7736/JKSPE.021.059
In this paper, we developed a virtual model predicting the tool deflection induced surface error and investigated the sensitivity and direction of the maximum surface error in various tool geometries and cutting conditions. The characteristics of the error were classified into the axial sensitive, radial sensitive, robust, overcut, and overlap zones according to the depth of cut. The maximum surface error was sensitive to the uncertainty of the radial depth of cut and robust to axial depth variation at the finishing process using a small radial depth of cut. The radial sensitivity was reduced by a large helix angle of tool. The sensitivity was decreased by increasing the depth of cut and it arrived at zero in the robust zone where the maximum surface error was not changed by both radial and axial depths of cut. An overcut occurred if axial and radial depths were deep and the overcut zone was enlarged by the helix angle and the number of teeth.
  • 7 View
  • 0 Download
Cutting Force Estimation Using Feed Motor Drive Current in Cutting Process Monitoring
Ki Hyeong Song, Dong Yoon Lee, Kyung Hee Park, Jae Hyeok Kim, Young Jae Choi
J. Korean Soc. Precis. Eng. 2020;37(11):803-812.
Published online November 1, 2020
DOI: https://doi.org/10.7736/JKSPE.020.094
The cutting force signal has traditionally served as a reference in conducting the monitoring studies using a variety of sensors to identify the cutting phenomena. There have been continuing studies on how to monitor the cutting force indirectly. It is because it is easier to access when considering an application to the actual machining site. This paper discusses a method of indirectly monitoring the cutting force using the feed drive current to analyze the change in the trend of the cutting force over the lapse of machining time. This enables the analysis of the cutting force by separating it in the X and Y axes of the machining plane. To increase the discrimination of the signal related to the actual cutting phenomenon from the feed drive current signal, a bandpass filter was applied based on the tooth passing frequency. The relationship between the feed drive current and the cutting force analyzed from the machining signal of actual machining conditions was applied to convert the feed drive current into the cutting force. It has been verified through experiments that the cutting load can be estimated with markedly high accuracy as a physical quantity of force from the feed motor current.

Citations

Citations to this article as recorded by  Crossref logo
  • Tool Wear Monitoring System based on Real-Time Cutting Coefficient Identification
    Young Jae Choi, Ki Hyeong Song, Jae Hyeok Kim, Gu Seon Kang
    Journal of the Korean Society for Precision Engineering.2022; 39(12): 891.     CrossRef
  • 7 View
  • 0 Download
  • Crossref
Development of BN Added Free-Machining Steel based on AISI P20
Sung Kug Hwang, Shi Hyoung Ryu
J. Korean Soc. Precis. Eng. 2020;37(3):175-180.
Published online March 1, 2020
DOI: https://doi.org/10.7736/JKSPE.019.127
As products life cycles are becoming shorter, the reduction of die and mold manufacturing cost and time is becoming more crucial in the machinery, automotive, and electronics industries. Over the past decades, many initiatives have been made to develop high performance free-machining steels without significant degradation of mechanical properties. To develop a modified AISI P20 free-machining steel, we studied the effects of B, N, and S additives on the variations of the cutting forces and metal structures such as grain size, density, and distribution of free-machining inclusions. From a set of experiments, it was observed that an appropriate addition of B and N additives reduces the resulting cutting force by approximately 6.3% and delays the tool wear progress. During the solidification B and N additives form hBN precipitates, with a layered and planar structure, within the steel matrix. The hBN precipitates’ weak shear strength results in lowering the required milling force. It is also confirmed that machinability is prominently improved when a large number of microsized hBN precipitates are distributed uniformly in the steel matrix. This study could contribute to the development of high performance BN-added free-machining steels for die and mold applications.
  • 7 View
  • 0 Download
Study on Cutting Force and Chip Shrinkage Coefficient during Thermal - Assisted Machining by Induction Heating of SKD11 Steel
Thi-Bich Mac, Tien-Long Banh, Duc-Toan Nguyen
J. Korean Soc. Precis. Eng. 2019;36(9):803-811.
Published online September 1, 2019
DOI: https://doi.org/10.7736/KSPE.2019.36.9.803
In this work, we present an experimental study on cutting force and chip shrinkage coefficient during the milling of SKD11 steel at elevated temperatures using a high-frequency induction heating method. To improve the determination of the chip shrinkage coefficient, a 3D scanning method incorporating GOM Inspect 3D data analysis software was used to measure the chip length. To evaluate the effect of the heating process on output data such as chip geometry, cutting force, and chip shrinkage coefficient, cutting experiments were conducted at room and elevated temperatures with the same machining parameters of cutting speed, feed rate, and cutting depth. The Taguchi orthogonal array method was subsequently used for experimental design to obtain optimum values of the machining parameters. The analysis of variance method was also performed to indicate the percentage effect of the machining parameters on the cutting force and chip shrinkage coefficient. Finally, models of the cutting force and chip shrinkage coefficient during thermal-assisted milling of SKD11 were established and compared with experimental data.

Citations

Citations to this article as recorded by  Crossref logo
  • The influence of induction-assisted milling on the machining characteristics and surface integrity of γ-TiAl alloys
    Tao Fan, Changfeng Yao, Liang Tan, Yilong Cao, Yunqi Sun, Wenhao Tang
    Journal of Manufacturing Processes.2024; 118: 215.     CrossRef
  • Assessment of the Effect of Thermal-Assisted Machining on the Machinability of SKD11 Alloy Steel
    Thi-Bich Mac, The-Thanh Luyen, Duc-Toan Nguyen
    Metals.2023; 13(4): 699.     CrossRef
  • The Impact of High-Speed and Thermal-Assisted Machining on Tool Wear and Surface Roughness during Milling of SKD11 Steel
    Thi-Bich Mac, The-Thanh Luyen, Duc-Toan Nguyen
    Metals.2023; 13(5): 971.     CrossRef
  • 7 View
  • 0 Download
  • Crossref
A Study on the End Mill Shape Design for Machining of High Hardness Die Steels by Comparison of Cutting Force
Ju Ho Lee, Young Tae Cho
J. Korean Soc. Precis. Eng. 2019;36(2):141-147.
Published online February 1, 2019
DOI: https://doi.org/10.7736/KSPE.2019.36.2.141
Heat treated die steels are durable and resistant to abrasion. However, machining them is not very efficient. To improve the machinability using the end-milling process for high hardness die steels, we proposed an end-mill shape through analysis of the cutting force and simulation. In this study, we determined the important factors affecting the cutting force among several elements of end-mill shape using the customized cutting simulator and the design of experiments (DOE) technique. After the selecting the effective factors based on the simulation and DOE results, various end-mills were fabricated by adjusting the parameters. In the experiment, the cutting force between 1 pass and 40 pass were measured and the average value compared with each end-mill shape. Edge radius, radial relief angle and axial relief angle were selected as a key parameters and optimized by measuring the cutting force through repeated and well controlled experiments. In conclusion, the effective factors were confirmed and we could now determine the optimum shape of end-mill to minimize the cutting force for high hardness die steels.

Citations

Citations to this article as recorded by  Crossref logo
  • Diagnosis of Tool Wear and Fracture through Cutting Force Frequency Analysis of Stainless Steel Cutting End Mill Tools
    Tae Gyung Lee, Bo Wook Seo, Hwi Jun Son, Seok Kim, Young Tae Cho
    Journal of the Korean Society of Manufacturing Process Engineers.2023; 22(12): 88.     CrossRef
  • 8 View
  • 0 Download
  • Crossref
A Study on the Machining Characteristics of a Turning-Center by Laser Assisted Machining
Choon-Man Lee, Eun Jung Kim
J. Korean Soc. Precis. Eng. 2018;35(6):597-601.
Published online June 1, 2018
DOI: https://doi.org/10.7736/KSPE.2018.35.6.597
This paper is a study of the machining characteristics, cutting force and surface roughness of a turning center by laserassisted machining. The laser-assisted machining (LAM) is an effective method to improve the machinability of difficult-tocut materials. The LAM has recently been studied for various machining processes, but the research on the threedimensional and turning-center machining is still insufficient. In this study, a machining experiment of the turning-center process was performed by the laser-assisted machining with Inconel 718. Before the machining experiment, performed to thermal analysis was for a selected to effective depth of cut. The cutting force and surface roughness were compared and analyzed. The machining experiment confirmed that the machinability was improved in the LAM.

Citations

Citations to this article as recorded by  Crossref logo
  • An Analytical Study on the Thermal-Structure Stability Evaluation of Mill-Turn Spindle with Curvic Coupling
    Choon-Man Lee, Ho-In Jeong
    Journal of the Korean Society of Manufacturing Process Engineers.2020; 19(1): 100.     CrossRef
  • 9 View
  • 0 Download
  • Crossref