In this study, we employed an infiltration technique to create a nanostructured functional layer, enhancing the electrochemically active area in solid oxide fuel cells (SOFCs). We infiltrated Pr2NiO4+δ (PNO) into a porous GDC electrolyte, resulting in a nanostructured catalytic layer. We characterized its microstructure and cross-sectional morphology using field-emission scanning electron microscopy (FE-SEM). The electrochemical performance was assessed at 750°C with a NiO-YSZ/YSZ/GDC half-cell configuration. The reference cell without PNO infiltration achieved a maximum power density of 2.07 W/cm2, while the cell with 0.05 M PNO infiltration reached an improved value of 2.55 W/cm2. These results demonstrate that by optimizing the infiltration concentration of PNO, we can fabricate a high-performance nanostructured functional layer without adding extra thickness, confirming infiltration as an effective strategy for enhancing SOFC performance.
In this paper, we designed and manufactured a new manipulator (less than 15 kg) to make the total weight of SCOBOT-200 (EOD robot: its platform weight is 35 kg) commercialized by FIRSTEC Co., Ltd. Link1 and Link2 of the manipulator were designed and fabricated using CFRP (Carbon Fiber Reinforced Plastics) material, and the other components were made of AL6061 material. The fabricated manipulator has 5-DOF, and the opening width of the gripper is more than 1520 mm. As a result of the characteristic test, the weight of manipulator is 14.5 kg, the length of the manipulator is 1500 mm, the payload when the manipulator extended is 8 kg, when folded is 20 kg. Thus, the manipulator manufactured can be used as a manipulator for a small EOD (Explosive Ordnance Disposal) robot.
Citations
Citations to this article as recorded by
Research on the application of intelligent robots in explosive crime scenes Junwei Guo International Journal of System Assurance Engineering and Management.2023; 14(2): 626. CrossRef
Study on Output Characteristics of Printed Flexible Tactile Sensors Connected to Brass Terminals Jindong Kim, Yonghwan Bae, Inhwan Lee, Hochan Kim Journal of the Korean Society of Manufacturing Process Engineers.2020; 19(4): 65. CrossRef