Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

1
results for

"Finite elements method structural analysis"

Article category

Keywords

Publication year

Authors

"Finite elements method structural analysis"

Article
Structural Analysis and Optimization of Electrochemical Hydrogen Compressor End Plate Using Taguchi Method and Gray Relational Analysis
Sang Duk Seo, Won Tae Kwon
J. Korean Soc. Precis. Eng. 2023;40(12):955-964.
Published online December 1, 2023
DOI: https://doi.org/10.7736/JKSPE.023.083
The Electrochemical Hydrogen Compressor is an optimal device for compressing low-pressure hydrogen to high-pressure hydrogen. It has a similar structure to the Proton Exchange Membrane Fuel Cell but operates at extremely high pressures, requiring multiple cells sealed with End Plates. The End Plate design must provide initial cell activation support, withstand maximum operating pressure within the stack, and prevent internal gas leakage. This study applies a multi-objective optimization method and grey relation analysis to determine the optimal design parameters for the End Plate based on the activation area of Dummy Cells. Finite Element Method (FEM) analysis is conducted to verify the effectiveness of the optimized End Plate design, considering the uniform pressure distribution with stacked Dummy Cells (1, 3, 6, 12). The analysis reveals that the parameters affecting the uniform pressure distribution include the End Plate design, stack sealing pressure, individual Cell design parameters, and the number of Cell stack layers.
  • 5 View
  • 0 Download