Recently, X-ray images through chest radiography (CXR) can distinguish gas, fat, soft tissue, bone, and metal based on their densities. It is the most basic chest imaging technique. With advancement of technology, CXR is becoming safer by lowering the radiation dose. It has become the first examination performed on patients with thoracic abnormality syndrome for early diagnosis of various chest diseases worldwide, accounting for up to 26% of all diagnostic radiology examinations. Despite its various advantages, CXR can distinguish only a few densities. Various thoracic anatomical structures can overlap in a single 2D image and various pathologies can show the same density, making accurate interpretation at various densities difficult. Errors in CXR interpretation have been present since the mid-20th century, with 10-20% of tuberculosis cases being interpreted differently by various radiologists and 19% of lung cancer cases being misinterpreted. To address these issues in interpreting chest CXR and to increase its usability in emergency situations and various environments, the quality of CXR images needs to be improved. In order to improve the quality of these images, this study aimed to establish a portable multi-energy X-ray field technique using MCNP with dual energies of 40 and 70 keV.
Recently, with the development of the space, mobility, semiconductor, and precision machinery industries, the processing of precision mechanical parts has been recognized as an important and a high value-added technology. Research on ultra-precision processing is actively underway to produce such products. In addition, eco-friendliness and 0% carbon are emerging as key keywords in modern industrial society, and the need for this is also increasing in the ultra-precision processing field. As the industry advances, environmental issues are becoming a major concern, and in the processing technology field, environmental destruction caused by cutting oil is becoming an issue. To solve this problem, this study measured the movement precision of the global feed system and instaled a Fine Servo that corrects the nm-level movement of the feed system in real time, using a piezoelectric actuator, to finely drive the cutting tool to control the movement necessary for machining. We intended to control variables for ultra-precision machining and measure cutting heat generation in real time to establish a dry cooling method using thermoelectric elements without using cutting oil.
In the framework of the 4th industrial revolution, modern machine building rapidly converges with IOT technology. This requires a very high level of precision machining of parts and assemblies, such as electronics, vehicle and components, agricultural and construction machines, optical instruments, and machine tools. However, high precision machinery is considerably expensive, and so a general need for low-cost equipment exists. While many researchers study this, they focus mainly on cutting tools. This study, for its part, focused on compensating errors and enhancing machinery precision, by adding a servo controller to the processing unit. As a result, we designed a fine dual servo system, ensuring 10 nm positioning accuracy and 40 nm of surface roughness.
In the framework of the 4th industrial revolution, modern machine-building rapidly converges with IOT technology. This requires very high precision machining of the parts and assemblies, such as electronics, vehicle and components, agricultural and construction machines, optical instruments, and machine tools. However, high precision machinery is quite expensive, and there exists a general need for low-cost equipment. While many researchers are working on this, their major focus is on cutting tools. This study aimed to compensate for errors and enhance machinery precision by adding a servo controller to the processing unit. Consequently, the study is on servo control and processing precision for processing utilizing ECTS (Error Compensation Tool Servo) to compensate for errors.