Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

2
results for

"Gyutae Park"

Article category

Keywords

Publication year

Authors

"Gyutae Park"

REGULAR

Electrochemical Impedance Analyses of ePTFE-reinforced Polymer Electrolyte Membrane-based PEMFC with Varying Thickness and Relative Humidity
Gyutae Park, Subin Jeong, Youngjae Cho, Junseo Youn, Jiwon Baek, Jooyoung Lim, Dongjin Kim, Taehyun Park
J. Korean Soc. Precis. Eng. 2025;42(11):901-907.
Published online November 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.052

The polymer electrolyte membrane fuel cell (PEMFC) generates electrical energy through electrochemical reactions and is a key technology for sustainable energy. The electrolyte membrane significantly affects performance under varying conditions. This study examines the impact of membrane thickness and relative humidity (RH) on PEMFC performance using j-V curves and electrochemical impedance spectroscopy (EIS). Experiments were conducted with membrane thicknesses of 30, 15, and 5 μm under RH conditions of 100%-100% and 100%-0%. Under RH 100%-100%, performance improved as the membrane thickness decreased, with values of 954, 1050, and 1235 mW/cm² for the 30, 15, and 5 μm membranes, respectively. The 5 μm membrane demonstrated a 23% performance improvement over the 30 μm membrane. Under RH 100%-0%, performances were 422, 642, and 852 mW/cm², with degradation rates of 55.8%, 39.0%, and 32.1%. The 5 μm membrane exhibited the lowest degradation rate, indicating superior performance under low humidity. These results suggest that thinner membranes generally enhance performance and maintain efficiency even in dry conditions.

  • 17 View
  • 1 Download
Article
Additional Ionomer-coated Layer for Self-humidifying Polymer Electrolyte Membrane Fuel Cells
Gyutae Park, Dongjin Kim, Junseo Youn, Junghyun Park, Hyoun-Myoung Oh, Taehyun Park
J. Korean Soc. Precis. Eng. 2023;40(12):997-1001.
Published online December 1, 2023
DOI: https://doi.org/10.7736/JKSPE.023.097
In this study, we aim to develop a self-humidifying polymer electrolyte membrane fuel cell (PEMFC) by depositing platinum (Pt) on a membrane using sputtering. After we coated it with a Nafion® ionomer solution. This is considered a solution that can prevent membrane degradation in low humidity conditions. By introducing this self-humidifying concept, we can expect improved performance compared to conventional PEMFCs. By managing the water content of Nafion®, we aim to improve both the stability and performance of the PEMFCs. This research contributes to the development of more efficient and reliable PEMFC systems, showing promise for advances in this field.
  • 5 View
  • 0 Download