Recently, lightweight materials centered on the future mobility industry are used in various parts such as battery housings and EV platform frames to improve fuel efficiency of automobile engines. Polycrystalline Diamond (PCD) tools are in demand by parts processing companies to improve productivity for machining lightweight parts. PCD drills have excellent cutting performance and wear resistance in high-speed machining. They are expected to grow in the global cutting tool market in the future. Research is needed to improve their performance. In this study, PCD gun drill and twist drill were respectively manufactured using brazing technology. Comparative machining experiments were then conducted. The PCD gun drill is a straight-shaped tool with a PCD tip brazed to a tool body groove for the tip to enter the cutting edge. The PCD twist drill is a spiral-shaped tool with a PCD drill blank brazed to a V-shaped butt joint with the tool body and an internal groove. Both PCD drills were successfully manufactured and evaluated for dimensional accuracy and surface quality by machining aluminum alloy materials with MCT equipment. In the future, we will evaluate not only aluminum materials, but also various machining materials.
In recent years, the demand for lightweight parts has been gradually increasing, particularly in the E-mobility industry. Among lightweight materials, aluminum alloys are highly beneficial for improving the fuel efficiency of automobile engines due to their lighter weight compared to iron-based materials. As electric vehicles become more prevalent, aluminum alloys are also extensively used in components such as battery housings and EV platform frames. To enhance productivity, aluminum parts processing companies require Polycrystalline Diamond (PCD) cutting tools for high-speed and ultraprecision processing. PCD cutting tools are known for their excellent cutting performance and wear resistance in highspeed aluminum machining, and they are anticipated to have significant growth potential in the global cutting tool market. In this study, we manufactured three types of PCD cutting tools (Drill, Endmill, and Reamer) using a self-developed brazing device and analyzed the machining surface quality through experiments. The results showed that the brazing joint quality of the PCD cutting tools was high, and the differences in surface roughness values under various machining conditions were minimal, confirming no issues with machining performance. Future research will focus on evaluating machining precision and tool life through comparative experiments with advanced PCD cutting tools from overseas.