Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

10
results for

"Hyeok Kim"

Article category

Keywords

Publication year

Authors

Funded articles

"Hyeok Kim"

Regular

Study on Fatigue Life Prediction of Crossed Roller Bearings
Gilbert Rivera, Dong-Hyeok Kim, Dong Uk Kim, Seong-Wook Hong
J. Korean Soc. Precis. Eng. 2025;42(12):1088-1098.
Published online December 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.097
This paper presents a method for estimating the fatigue life of crossed roller bearings (XRBs). XRBs feature a single row of rollers arranged alternately at right angles, making them ideal for applications that require high precision and a compact design. In rolling-element bearings, fatigue life is a crucial design parameter for ensuring long-term reliability and performance. However, existing fatigue life estimation models for XRBs in the literature are limited to basic rating life, with no models available for reference rating life. To address this gap, we developed a comprehensive fatigue life prediction model specifically for XRBs. We formulated a corresponding dynamic load rating to align with the values provided by bearing manufacturers and calibrated an unknown adjustment factor for XRBs using a commercial program. Additionally, a parametric study was conducted to investigate the impact of varying diametral clearance, external loads, roller dimensions, and roller profile parameters on the fatigue life of XRBs.
  • 170 View
  • 14 Download
Articles
Analysis of TGV Formation on Glass Substrates according to SLM Image
Jonghyeok Kim, Byungjoo Kim, Sanghoon Ahn
J. Korean Soc. Precis. Eng. 2025;42(7):521-527.
Published online July 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.062
The demand for high-speed processing and big data has accelerated the adoption of three-dimensional integrated circuits (3D ICs), where interposers serve as essential components for chip-to-chip connectivity. However, silicon interposers using the through-silicon via (TSV) technology have structural limitations. As alternatives, glass-based interposers employing the through-glass via (TGV) technology are gaining attention. This study explored the fabrication of via holes in glass substrates using the selective laser etching (SLE) process. A spatial light modulator (SLM) was used to generate donut- shaped bessel beams by inserting an image pattern without relying on phase modulation. The machinability of via holes fabricated with these beams was compared to that of holes formed using phase-modulated beams. Effect of pulse energy on taper angle was also investigated. Hourglass-shaped holes were observed at lower pulse energies. However, taper angles approaching 90° were observed at higher energies, indicating an improved verticality.
  • 41 View
  • 5 Download
Tool Wear Monitoring System based on Real-Time Cutting Coefficient Identification
Young Jae Choi, Ki Hyeong Song, Jae Hyeok Kim, and Gu Seon
J. Korean Soc. Precis. Eng. 2022;39(12):891-898.
Published online December 1, 2022
DOI: https://doi.org/10.7736/JKSPE.022.111
Among the monitoring technologies in the metal-cutting process, tool wear is the most critical monitoring factor in real machining sites. Extensive studies have been conducted to monitor equipment breakdown in real-time. For example, tool wear prediction studies using cutting force signals and deducting force coefficient values from the cutting process. However, due to many limitations, those wearable monitoring technologies have not been directly adopted in the field. This paper proposes a novel tool wear predictor using the cutting force coefficient with various cutting tools, and its validity evaluates through cutting tests. Tool wear prediction from the cutting force coefficient should conduct in real-time for adoption in real machining sites. Therefore, a real-time calculation algorithm of the cutting force coefficient and a tool wear estimation method proposes, and they compare with actual tool wear in cutting experiments for validation. Validation cutting tests are conducted with carbon steel and titanium, the most commonly used materials in real cutting sites. In future work, validation will be conducted with different materials and cutting tools, considering the application in real machining sites.

Citations

Citations to this article as recorded by  Crossref logo
  • A Review of Intelligent Machining Process in CNC Machine Tool Systems
    Joo Sung Yoon, Il-ha Park, Dong Yoon Lee
    International Journal of Precision Engineering and Manufacturing.2025; 26(9): 2243.     CrossRef
  • 36 View
  • 0 Download
  • Crossref
Study on Enhancing Cambolt Yield Load by Optimizing Figuration
Jun Hyeok Kim, Hee Wook Cho, Jong Rae Cho, Jun Ha Lee
J. Korean Soc. Precis. Eng. 2022;39(10):767-772.
Published online October 1, 2022
DOI: https://doi.org/10.7736/JKSPE.022.031
Cambolt that has two slot shape in thread, have been widely used to adjust wheel alignment in Hyundai and Kia motors. These slots in thread make stress more concentrated, and lead to yield more easily. This paper describes the optimizing process of the Cambolt figure, to maximize the yield load. Contribution of the Cambolt design factors to yield load was verified, through actual test and finite element analysis. Using the DFSS (Design for Six Sigma) method, we optimized the design factors of Cambolt, and confirmed the yield load was enhanced. This new Cambolt can provide more stable wheel alignment joints, by using a higher range of preload.
  • 22 View
  • 0 Download
A Study on the Introduction of Natural Gas-Fueled Solid Oxide Fuel Cells as Distributed Generation System for Electric Power Backup in North Korea
Obeen Kwon, Hyeonjin Cha, Heesoo Choi, Hongnyoung Yoo, Jaeyeon Kim, Hyeok Kim, Taehyun Park
J. Korean Soc. Precis. Eng. 2021;38(4):305-314.
Published online April 1, 2021
DOI: https://doi.org/10.7736/JKSPE.020.116
This paper reports the effectiveness of the introduction of NGDG-SOFC (Natural Gas-Fueled Distributed Generation Solid Oxide Fuel Cell) as a solution to social problems that could arise in the unification era due to the power shortage in North Korea. Under the actual operating conditions of the plant, a stack that operates at a voltage of 33.87 V and current of 31.24 A was modeled with a gross output of 1.06 kW and a net output of 1.00 kW considering the balance of plant (BOP) consumption power. Considering the average primary energy consumption in the ASEAN countries in 2020, 2,870 MW was estimated as the amount of power generation required in North Korea. Also, the gross area of the plant and the annual fuel cost were estimated. Consequently, it is concluded that the area of 861 km2 which corresponds to 0.71 percent of the gross area of North Korea, and fuel cost of about 1,474 million $/year are required. The introduction of NGDG-SOFC plants is believed to follow the global trend of renewable energy and resolving the power shortage in North Korea in an eco-friendly manner.

Citations

Citations to this article as recorded by  Crossref logo
  • Distributed generation parameter optimization method based on fuzzy C-means clustering under the Internet of Things architecture
    Xin Yao, Liyun Xing, Ping Xin
    Energy Reports.2021; 7: 106.     CrossRef
  • 40 View
  • 0 Download
  • Crossref
Cutting Force Estimation Using Feed Motor Drive Current in Cutting Process Monitoring
Ki Hyeong Song, Dong Yoon Lee, Kyung Hee Park, Jae Hyeok Kim, Young Jae Choi
J. Korean Soc. Precis. Eng. 2020;37(11):803-812.
Published online November 1, 2020
DOI: https://doi.org/10.7736/JKSPE.020.094
The cutting force signal has traditionally served as a reference in conducting the monitoring studies using a variety of sensors to identify the cutting phenomena. There have been continuing studies on how to monitor the cutting force indirectly. It is because it is easier to access when considering an application to the actual machining site. This paper discusses a method of indirectly monitoring the cutting force using the feed drive current to analyze the change in the trend of the cutting force over the lapse of machining time. This enables the analysis of the cutting force by separating it in the X and Y axes of the machining plane. To increase the discrimination of the signal related to the actual cutting phenomenon from the feed drive current signal, a bandpass filter was applied based on the tooth passing frequency. The relationship between the feed drive current and the cutting force analyzed from the machining signal of actual machining conditions was applied to convert the feed drive current into the cutting force. It has been verified through experiments that the cutting load can be estimated with markedly high accuracy as a physical quantity of force from the feed motor current.

Citations

Citations to this article as recorded by  Crossref logo
  • Tool Wear Monitoring System based on Real-Time Cutting Coefficient Identification
    Young Jae Choi, Ki Hyeong Song, Jae Hyeok Kim, Gu Seon Kang
    Journal of the Korean Society for Precision Engineering.2022; 39(12): 891.     CrossRef
  • 37 View
  • 2 Download
  • Crossref
Estimation of the Capacity of Hydrogen-Based Energy Storage Systems toward Relieving the Imbalance of Electrical Load Pattern of South Korea
Jaeyeon Kim, Hyeok Kim, Geon Hwi Kim, Dasol Kim, Hansol Ryu, Taehyun Park
J. Korean Soc. Precis. Eng. 2020;37(7):547-554.
Published online July 1, 2020
DOI: https://doi.org/10.7736/JKSPE.020.029
This study reports on the feasibility of applying polymer electrolyte membrane fuel cells (PEMFCs) system to an energy storage system (ESS). We modeled each constituting system to compute the overall efficiency of the ESS. As a result, it was verified that the power plants’ electric powering capability can be curtailed. The amount of reduction is equal to that of 2nd Gori Nuclear Power Plant currently under construction. We calculated that approximately 320.85 L/day · MW of hydrogen is produced on a national scale. Also, Seoul’s demand output power of PEMFC and the requisite area of sites to install the PEMFC system are approximately 236 MW and 59059 m² respectively. This study can contribute to preventing the upsurge of the entire electric powering installed capability. Based on the present technology level, this study diagnoses the use of hydrogen-based ESS which will be introduced in the upcoming hydrogen economy period. Considering the water electrolysis by polymer electrolyte membrane water electrolyzers are currently at the beginning of commercialization and the energy density per mass of hydrogen is exceedingly high, we anticipate that the future of hydrogen base ESS’ effectiveness will reach greater levels than the analysis of this study.

Citations

Citations to this article as recorded by  Crossref logo
  • Economic dispatch of microgrid generation-load-storage based on dynamic bi-level game of multiple stakeholders
    Mao Yang, Jinxin Wang, Xudong Cao, Dake Gu
    Energy.2024; 313: 133931.     CrossRef
  • Efficiency improvement of a fuel cell cogeneration plant linked with district heating: Construction of a water condensation latent heat recovery system and analysis of real operational data
    Li Yuan-Hu, Jinyoung Kim, Sangrae Lee, Gunhwi Kim, Haksoo Han
    Applied Thermal Engineering.2022; 201: 117754.     CrossRef
  • 66 View
  • 1 Download
  • Crossref
Study on Grasping Performance of Finger Exoskeleton Actuated by Electroactive Polymers
Min Hyeok Kim, Soo Jin Lee, Jae Young Jho, Dong Min Kim, Kyehan Rhee
J. Korean Soc. Precis. Eng. 2015;32(10):873-878.
Published online October 1, 2015
A finger exoskeleton actuated by ionic polymer metal composite (IPMC) actuators has been developed. In order to evaluate performance of cylindrical grasping of finger exoskeletons, they were equipped with a hand dummy, which is composed of four fingers. The finger dummy has three joints that can be actuated by bending the IPMC actuators. A four finger grasping motion was analyzed using cameras, and cylindrical grasping motion was accomplished within two minutes after applying a 4 volt direct voltage to the IPMC actuators. A pull out test was also performed to evaluate the cylindrical grasping force of the finger exoskeletons actuated by the IPMC actuators. Each finger generated about 2 N of holding force when grasping the cylinder which had a diameter of 50 mm.
  • 11 View
  • 0 Download
Energy Consumption Monitoring System for Each Axis of Machining Center
Jae Hyeok Kim, Sung Ho Nam, Dong Yoon Lee
J. Korean Soc. Precis. Eng. 2015;32(4):339-344.
Published online April 1, 2015
Machine tools are one of the energy-intensive equipment used in the manufacturing industry. The importance of energy has increased and the machine tools are required to be energy-efficient. The servo systems of the machine tool consume electrical power to rotate a spindle and to feed a tool during machining. Servo system consumes a lot of energy when the machine tool is operated. The energy consumption pattern of each axis needs to be investigated in order to optimize the machining process with regard to energy cost. In this paper, an energy monitoring system is developed considering various measuring points of servo system in order to grasp the energy consumption pattern of each axis.
  • 12 View
  • 0 Download
Laser Microfabrication of Multidirectional Side-fire Optical Fiber Tip
Deok Jung, Ik-Bu Sohn, Young-Chul Noh, Jin-Hyeok Kim, Changhwan Kim, Ho Lee
J. Korean Soc. Precis. Eng. 2013;30(10):1017-1022.
Published online October 1, 2013
Currently, various optical fiber tips are used to deliver laser beam for endoscopic surgery. In this paper, we demonstrated multidirectional (forward and side) firing optical fiber tip using a femtosecond micromachining and CO2 laser polishing technology. We controlled the edge width of optical fiber tip, by modulating the condition of CO₂ laser, to regulate the amount of side and forward emission. The distal end of the optical fiber with core/clad diameter of 400/ 440 μm was microstructured with cone shape by using a femtosecond laser. And then the microstructured optical fiber tip was polished by CO₂ laser beam result in smoothing and specular reflection at the surface of the cone structure. Finally, we operated the LightTools simulation and good agreement was generally found between the proposed model and experimental simulation.
  • 12 View
  • 0 Download