Solid Oxide Fuel Cells (SOFCs) are energy conversion devices known for their significantly higher power density compared to other fuel cell types. However, their high operating temperatures pose challenges related to thermal stability. To address this, research is focusing on Low-Temperature SOFCs (LT-SOFCs), which function at lower temperatures and exhibit enhanced electrochemical performance. While various electrode materials are utilized in SOFCs, platinum (Pt) stands out for its excellent electronic conductivity and catalytic activity. Unfortunately, at the operating temperatures of SOFCs, Pt tends to agglomerate, leading to a rapid reduction in the triple phase boundary (TPB) and a subsequent decline in electrochemical reactions. In this study, LT-SOFCs were fabricated with a Praseodymium Oxide (PrOx) capping layer applied to a porous Pt cathode using sputtering, with various thicknesses achieved by adjusting the deposition time. The electrochemical performance of the LT-SOFCs was measured at 500oC. Additionally, the degradation behavior of the LT-SOFCs was assessed by applying a constant voltage of 0.5 V for 48 hours. Scanning Electron Microscopy (SEM) analysis was also conducted on the PrOx capping layer thin films under the same operating conditions.
The ionomer content in the catalyst layer is a crucial design factor that affects the performance of polymer electrolyte membrane fuel cells (PEMFCs). However, the optimal ionomer content can vary based on the surrounding humidity levels. This study systematically evaluated the influence of the ionomer-to-carbon (I/C) ratio (0.00, 0.55, and 0.91) on PEMFC performance under fully humidified (RH 100%) and low-humidity (RH 25%) conditions. Membrane-electrode assemblies (MEAs) were fabricated using a spray coating technique, and their electrochemical properties were analyzed through polarization curves and electrochemical impedance spectroscopy (EIS). Under RH 100%, the MEA with an I/C ratio of 0.55 achieved the highest peak power density of 519.8 mW/cm2, indicating a successful balance between proton conductivity and gas transport. Conversely, under RH 25%, the best performance of 203.9 mW/cm2 was observed at an I/C ratio of 0.91. This shift is attributed to improved water retention at higher ionomer content, which reduced membrane dehydration and lowered both ohmic and Faradaic resistances. These findings highlight the dual role of the ionomer in facilitating proton transport and managing water balance, emphasizing the necessity of optimizing the I/C ratio according to operating conditions for stable and high-performing PEMFC operation.
As a heating method for RHCM (Rapid Heating Cycle Molding) various heating technologies such as high frequency induction heating, IR heating, gas heating, and high temperature steamare applied, but these methods are not satisfying high productivity due to low energy efficiency. Research has been actively conducted on RHCM based on planar heating elements with high heating efficiency, such as carbon nanotubes, which are applied. To apply the CNT web film to the RHCM, a heating element must be applied inside the injection mold and power must be applied. As electricity is directly applied to the CNT web film to generate heat, all mold parts in contact with the CNT web film must be insulated, and high heat transfer is required for rapid heating performance. Thus, in this study, a multi-layer structure mold module for insulation and high heat transfer was designed to enable rapid heating by applying a CNT web film as a heat source. To this end, we intend to present a research direction for the commercialization of rapid heating molds, by identifying the main variables of rapid heating through heating experiments by the mold metal and insulator materials, and reflecting them in the mold design.
An orbital grinding system uses a special motion to machine crankshafts in ships. When a crankshaft is operated, eccentric pins rotate and a grinding wheel moves in order to grind the pins. Thermal error caused by heat generated in the grinding process decreases the quality of the final product. In this study, the thermal error of an orbital grinding system caused by heat generation was investigated in order to predict the extent of thermal error that can occur during the grinding process. Since the machine position changes during orbital grinding, the pin part is divided into 30 degree intervals and heat is generated. Total thermal error was measured by summing the thermal errors associated with the pin and the grinding wheel. Total thermal error was found to reach a maximum at 60 degrees and a minimum at 210 degrees because of the shape of the crankshaft.