To develop a technology to diagnose the fault of dampers applied to railway vehicles and to set criteria, test runs were performed to measure damping force and displacement acting on a lateral damper during vehicle operation. Normal damper and fault damper were installed on a test train. Damper force and velocity of the lateral damper during test running were measured. Distributions of damper force and velocity representing the state of the damper had the same distribution in repeated tests. Distribution of the damper force and velocity was consistently uniform regardless of the train driving direction. Thus, the effect of train driving direction on damper force and velocity distribution was insignificant. The fault of the damper appeared to have a direct effect on the distribution of the damper force, suggesting that the fault of the damper could be sufficiently diagnosed just by monitoring the force of the damper. Especially, when comparing the velocity-force distribution, the fault damper showed a clear difference from a normal damper. Results of this paper could be used for developing a technology for diagnosing damper fault for railway vehicles in the future.
Critical speed analysis was conducted for a active steering bogie prototype, developed to improve the curving performance of railway vehicles. The critical speed for the design concept was about 169.2 ㎞/h. To validate the analysis result, we performed a critical speed test for the prototype bogie using a roller-rig tester. The test results showed that the critical speed for the prototype bogie was about 165 ㎞/h. From the analysis and test results, The critical speed for the prototype bogie was determined to be 165 ㎞/h. Considering the maximum operating speed of the test vehicle is 100 ㎞/h, the prototype bogie is considered stable.
In this paper, we studied the steering performance of wheelset with primary suspension characteristics of railway vehicle. We carry out dynamic analysis and experimental study for the vehicle models which are different primary suspension characteristics. The steering angle of a vehicle model (Case 1) operating in domestic subway lines is insufficient compared with an objective steering angle for curved track. And the steering angle of a vehicle model (Case 2) with improved self-steering performance of wheelset is a little improved compare to previous vehicle model. But also Case 2 model is still insufficient compared with an objective steering angle and has its limit in steering performance. So to overcome this limit of steering performance of passive type railway vehicle, an active steering technology is being developed. In case of vehicle model with active steering system, the steering performance is improved remarkably compared to passive type vehicle model.
Lateral force of wheel is important parameter when we evaluate the safety of a railway vehicle on curved track. The lateral force of wheel is influenced by the steering performance of wheelsets. Generally, in passive type vehicles, the steering performance of wheelsets is influenced by the parameters like primary spring stiffness, wheel base, conicity of the wheel profile, etc. But, the steering performance of passive type vehicle has its limit. To overcome the limit of the steering performance of passive type vehicle, active steering technology is being developed. In this paper, we analyze the lateral force of wheel and the safety of the railway vehicle on curved track by adopting the active steering technology. As results of dynamic analysis for vehicle model equipped with active steering system, the lateral force of wheel is reduced and the safety is improved remarkably.
In general, lateral ride comfort of railway vehicle is mainly influenced by a secondary suspension placed between the bogie and carbody. Higher operating speeds of train results in increased vibration of carbody, which has a negative impact related to the ride comfort. To solve this problem, researches to replace the conventional passive suspension with (semi)active technology in the secondary suspension of a railway vehicle have been carried out. The semi-active suspension using the magneto-rheological damper is relatively simpler system and has advantage in maintenance compared to the hydraulic type semi-active damper. This study was performed to reduce lateral vibration acceleration of carbody related to ride comfort of railway vehicles with a semi-active suspension system. The numerical analysis was conducted by replacing passive lateral damper with semi-active MR damper, and robust control with the MR damper was applied to the 1/5 scaled railway vehicle model.
To analyze the effect of the track structure on the running performance of the railway vehicle, we studied on the vibration and ride characteristics of the high speed train. As results, vibration and ride level of high speed train on the concrete bed track is more reduced than on the ballast bed track. Peak-peak value of carbody vibration on the concrete bed track at 300㎞/h is half of the peak-peak value of carbody vibration on the ballast bed track. Ride level on the concrete bed track at 300㎞/h is same level as that on the ballast bed track at 250km/h. Thus, Vibration and ride performance of the high speed train on the concrete bed track is greatly improved compared with that on the ballast bed track.
To analyze the effect of wear of wheel profile on the running stability of rolling-stock, theoretical and experimental studies were conducted on the profiles used in conventional lines. In experiment using 1/5 scale model to verify the results of the theoretical analysis, the test results of the critical speed for worn wheel profile samples show similar trend. In case of the conical type wheel profile(Profile 40), the equivalent conicity is increased with flange wear. But in case of the arc type wheel profile(Profile 20h), the equivalent conicity is decreased with flange wear. And the critical speed of the bogie was inverse proportion to the equivalent conicity. It is shown that the variation of the critical speed with the wheel wear could be changed according to the design concept and wear pattern of wheel profile. Results of the theoretical and experimental studies are discussed here.
A design method of railway wheel profile with objective function of equivalent conicity considering wheel dimension constraint, two points contact problem between wheel and rail was proposed. New design method shows good results. New wheel profile generated from optimization process shows better dynamic performance compared with initial profile as the purpose of wheel profile design. And to verify the design method with testing the stability of new wheel profile, we conducted a critical speed test for new wheel profile using scale model applied scaling method of railway vehicle dynamics. The result of critical speed test show good agreement with that of numerical analysis. From the above results, it is seen that the design method with objective function of equivalent conicity is feasible and it could be applied to design new wheel profile efficiently.
For the improvement of a conventional railway speed, tilting train(Tilting Train eXpress) is under the development aiming for a maximum speed 180㎞/h. Compared to the existing conventional rolling-stock, tilting train could take an advantage of speed improvement about 20-30% on curve sections due to the improvement of curving performance. However, this speed increasement creates a severe load at wheels, thus it is necessary to study the safety of wheel for tilting train preferentially. On the other hand, it is under consideration that the wheel for conventional railway rolling-stock at speeds of 150km/h will be applied to tilting train at speeds of 180㎞/h. In this paper, we have studied the strength of wheel structure, the geometrical contact characteristics, and the dynamic performance of wheel to evaluate the safety of wheel for tilting train.