From the past, productivity improvement has been a problem to be solved, and various methods have been continuously developed. Recently, the demand for electric vehicles has increased along with the domestic and international environmental policies. Researches on the electrode production facilities have been actively conducted to increase the productivity of secondary batteries. Dispensers required for bonding the separator of the secondary battery, the cathode material and the anode material are also increasing in demand. The dispensers that spray a certain amount of adhesive quickly contribute to productivity improvement. However, Piezo type, which is currently being developed and used widely, has a higher performance than some industry, and its more expensive. In this study, we design a dispenser with lower performance than the conventional piezo type and lower the unit price and analyze the results.
Wind power, which is one of the promising renewable energies, has shown the high growth rate of 35 % of the annual average in the recent 5 years and also windmill related equipment market has been fast-growing. Yaw & Pitch bearing are the key parts of windmill and are machined by huge vertical lathe which is monopolized by the advanced countries. The purpose of this study is to develop the multi-tasking vertical lathe for 5 ㎿ grade windmill bearings, which might be mass produced 3 or 5 years later. In this study, the structure of the crossrail and rotary table, which are the key units of the huge multi-tasking vertical lathe, were optimized through the finite element analysis. Also the basic performance of the rotary table has been evaluated.