The pipe inspection robot using the MFL non-destructive inspection equipment, has high inspection efficiency in the pipe with high magnetic permeability. However, this equipment generates attractive force between the pipe and the permanent magnet, requiring a high driving force for the robot, and sometimes causes the robot to be incapable of driving. In this study, the development of a spiral running type magnetic leakage detection pipe inspection robot system is described. Multi-body dynamics analysis was performed on the designed robot, to confirm the robot"s driving performance. After that, the performance of the robot was verified, by testing the manufactured robot in a standardized test bed.
Drone stations are increasingly being applied to enhance the mission capabilities of drones. The drone’s station landing occurs in a limited space. A relative position communication signal between the drone and the station is required. Strong, precise control over communication signal interference is required. In this paper, we describe a filter processing method for position signal processing. In consideration of the anchor position and installation angle of the UWB module of the drone station, nine performance test cases were proposed. As a result of the performance test, high position accuracy output was confirmed when considering the result of minimizing signal shading and beam pattern direction with excellent reception sensitivity. A performance test was conducted using the developed drone station, and the landing performance was confirmed with a precision of within 20 cm.
An elevating drone station is very useful when lifting and lowering the battery charging station for safe installation, maintenance, and energy efficiency of a drone operation. When drone station modules rise above the average roof level of neighboring structures they may receive a strong wind force; thus, understanding the physical phenomena of both the structures and fluid is important to understand the structure"s reaction to the wind force. However, most studies in the field of drone stations did not perform a structural safety evaluation under wind loadings. Therefore, in this paper, we carried out a fluid-structure interaction analysis to verify the design of the lifting-and-lowering-type drone station.
The lifting-and-lowering type drone station is very useful when lifting and lowering the battery charging station for safe installation, maintenance, and energy efficiency of drone operation. Therefore, understanding the coupling motion between cable and pulley is important for evaluating characteristics like safety and dynamic stability of the lifting-and-lowering type drone station. Although multibody dynamics (MBD) is widely used for numerically analyzing the dynamic behavior of interconnected bodies, attempts to analyze the coupling motion between cable and pulley have been made only recently, within the last decade. Therefore, this paper attempts to develop the MBD model for the lifting-and-lowering type drone station, including cables, pulleys, and winches using MotionSolve (Altair). The results of the winch torque obtained analytically and numerically were compared to verify the effectiveness of the proposed MBD model.
Citations
Citations to this article as recorded by
A Study on Improving the Sensitivity of High-Precision Real-Time Location Receive based on UWB Radar Communication for Precise Landing of a Drone Station Sung-Ho Hong, Jae-Youl Lee, Dong Ho Shin, Jehun Hahm, Kap-Ho Seo, Jin-Ho Suh Journal of the Korean Society for Precision Engineering.2022; 39(5): 323. CrossRef
This paper proposes an integrated control system for multi-disaster response robots based on Robot Operating System (ROS). The contributions of this paper were as follows: 1) A multi-score-based system concept was proposed in consideration of network instability issues which might frequently occur in compound disaster environments; 2) A detailed ROS based software structure was implemented to apply the proposed system to real robots; 3) Hardware cockpit and graphical user interface (GUI) for an operator were implemented; 4) through the experiment, the problem of the system based on common ROS structure, the out-of-control state, was confirmed and we verified the proposed system using the scenario.
This paper presents a novel method of designing an efficient locomotion pattern generating algorithm for snake robots by a genetic algorithm (GA). In search and rescue operations in disaster areas, a snake robot requires multiple locomotion patterns. To overcome the complexity of snake robot control, we used a central pattern generator (CPG)-based control method which mimics the motion of a biological snake. GA was used to optimize CPG parameters to maximize locomotion performance. The locomotion performance according to the CPG parameters change was analyzed using the snake robot simulator. The proposed locomotion pattern generation algorithm evolved quickly for the target performance and obtained CPG parameters for the desired locomotion.
Citations
Citations to this article as recorded by
A Study on I-PID-Based 2-DOF Snake Robot Head Control Scheme Using RBF Neural Network and Robust Term Sung-Jae Kim, Jin-Ho Suh Journal of Korea Robotics Society.2024; 19(2): 139. CrossRef
A Study on the Design of Error-Based Adaptive Robust RBF Neural Network Back-Stepping Controller for 2-DOF Snake Robot’s Head Sung-Jae Kim, Maolin Jin, Jin-Ho Suh IEEE Access.2023; 11: 23146. CrossRef
In this study, we developed a hydraulic manipulator to assist firefighters and rescue personnel at disaster sites. In the design procedure, we analyzed the manipulator considering the hydraulic actuators as well as the manipulator kinematics and dynamics. For the user interface, a macro/manual operation concept was proposed to provide an effective response in emergency and disaster situations. To cope with abnormalities of the disaster site operator, a protocol for switching local/remote operations was developed. The effectiveness of the hydraulic manipulator and operating system was verified through task implementation experiment.
With increasing demand for disaster response robots, many governments projects have been launched to ensure safety for citizens. This paper reviews government policies and research trends on disaster response robots. To give a bird"s eye view on disaster response robots, we first reviewed foreign technologies. We then introduced recent technologies developed in Korea and some ongoing researches on disaster response robots.
Citations
Citations to this article as recorded by
Role-taking and robotic form: an exploratory study of social connection in human-robot interaction Jenny L Davis, Robert Armstrong, Anne Groggel, Sharni Doolan, Jake Sheedy, Tony P. Love, Damith Herath International Journal of Human-Computer Studies.2023; 178: 103094. CrossRef
Development of a Realistic Simulator for Driving Education of a Disaster-Responding Special Purpose Machinery Hyo-Gon Kim, Jung-Woo Park, Hyo-Jun Lee, Sung-Ho Park, Young-Ho Choi, Byeong-Kyu Lee, Jin-Ho Suh Journal of Power System Engineering.2021; 25(2): 86. CrossRef
An Integrated Control System for Disaster Response Robot based on Multiple ROS Core considering Network Instability Kyon-Mo Yang, Jin-Ho Suh, Ji-Won Lee, Jinhong Noh, Min-Gyu Kim, Kap-Ho Seo Journal of the Korean Society for Precision Engineering.2021; 38(10): 741. CrossRef